Suppr超能文献

工程化长循环肽聚糖水解酶可有效治疗全身性金黄色葡萄球菌感染。

Engineering of Long-Circulating Peptidoglycan Hydrolases Enables Efficient Treatment of Systemic Staphylococcus aureus Infection.

机构信息

Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland.

Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.

出版信息

mBio. 2020 Sep 22;11(5):e01781-20. doi: 10.1128/mBio.01781-20.

Abstract

is a human pathogen causing life-threatening diseases. The increasing prevalence of multidrug-resistant infections is a global health concern, requiring development of novel therapeutic options. Peptidoglycan-degrading enzymes (peptidoglycan hydrolases, PGHs) have emerged as a highly effective class of antimicrobial proteins against and other pathogens. When applied to Gram-positive bacteria, PGHs hydrolyze bonds within the peptidoglycan layer, leading to rapid bacterial death by lysis. This activity is highly specific and independent of the metabolic activity of the cell or its antibiotic resistance patterns. However, systemic application of PGHs is limited by their often low activity and by an insufficient serum circulation half-life. To address this problem, we aimed to extend the half-life of PGHs selected for high activity against in human serum. Half-life extension and increased serum circulation were achieved through fusion of PGHs to an albumin-binding domain (ABD), resulting in high-affinity recruitment of human serum albumin and formation of large protein complexes. Importantly, the ABD-fused PGHs maintained high killing activity against multiple drug-resistant strains, as determined by testing in human blood. The top candidate, termed ABD_M23, was tested to treat -induced murine bacteremia. Our findings demonstrate a significantly higher efficacy of ABD_M23 than of the parental M23 enzyme. We conclude that fusion with ABD represents a powerful approach for half-life extension of PGHs, expanding the therapeutic potential of these enzybiotics for treatment of multidrug-resistant bacterial infections. Life-threatening infections with are often difficult to treat due to the increasing prevalence of antibiotic-resistant bacteria and their ability to persist in protected niches in the body. Bacteriolytic enzymes are promising new antimicrobials because they rapidly kill bacteria, including drug-resistant and persisting cells, by destroying their cell wall. However, when injected into the bloodstream, these enzymes are not retained long enough to clear an infection. Here, we describe a modification to increase blood circulation time of the enzymes and enhance treatment efficacy against -induced bloodstream infections. This was achieved by preselecting enzyme candidates for high activity in human blood and coupling them to serum albumin, thereby preventing their elimination by kidney filtration and blood vessel cells.

摘要

是一种人类病原体,可导致危及生命的疾病。多药耐药感染的日益流行是一个全球健康关注问题,需要开发新的治疗选择。肽聚糖降解酶(肽聚糖水解酶,PGHs)已成为对抗和其他病原体的一类非常有效的抗菌蛋白。当应用于革兰氏阳性菌时,PGHs 水解肽聚糖层中的键,导致细菌通过裂解迅速死亡。这种活性高度特异,独立于细胞的代谢活性或其抗生素耐药模式。然而,PGHs 的全身应用受到其通常较低的活性和不足的血清半衰期的限制。为了解决这个问题,我们旨在延长针对人类血清中高活性的 PGHs 的半衰期。通过将 PGHs 融合到白蛋白结合域(ABD)中来延长半衰期并增加血清循环,从而导致与人血清白蛋白的高亲和力募集和形成大的蛋白质复合物。重要的是,ABD 融合的 PGHs 保持了对多种耐药菌株的高杀伤活性,这是通过在人血中进行测试来确定的。顶级候选物称为 ABD_M23,用于治疗 -诱导的鼠菌血症。我们的研究结果表明,与亲本 M23 酶相比,ABD_M23 的疗效显著更高。我们得出结论,与 ABD 的融合代表了延长 PGHs 半衰期的强大方法,扩大了这些酶抗生素治疗多药耐药细菌感染的治疗潜力。由于抗生素耐药细菌的流行及其在体内受保护的小生境中持续存在的能力,与 相关的危及生命的感染通常难以治疗。溶菌酶是有前途的新型抗菌药物,因为它们通过破坏细胞壁迅速杀死细菌,包括耐药和持续存在的细胞。然而,当注入血液时,这些酶在清除感染方面的保留时间不够长。在这里,我们描述了一种修饰方法,以增加酶的血液循环时间并增强其对 -诱导的血流感染的治疗效果。这是通过预先选择在人血中具有高活性的酶候选物并将其与血清白蛋白偶联来实现的,从而防止它们被肾脏过滤和血管细胞消除。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/de58/7512550/b5960b685f43/mBio.01781-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验