Suppr超能文献

绘制兼性甲基营养型甲醇芽孢杆菌的代谢图谱

Charting the Metabolic Landscape of the Facultative Methylotroph Bacillus methanolicus.

作者信息

Delépine Baudoin, López Marina Gil, Carnicer Marc, Vicente Cláudia M, Wendisch Volker F, Heux Stéphanie

机构信息

TBI, CNRS, INRA, INSA, Université de Toulouse, Toulouse, France.

Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.

出版信息

mSystems. 2020 Sep 22;5(5):e00745-20. doi: 10.1128/mSystems.00745-20.

Abstract

MGA3 is a thermotolerant and relatively fast-growing methylotroph able to secrete large quantities of glutamate and lysine. These natural characteristics make a good candidate to become a new industrial chassis organism, especially in a methanol-based economy. Intriguingly, the only substrates known to support growth as sole sources of carbon and energy are methanol, mannitol, and, to a lesser extent, glucose and arabitol. Because fluxomics provides the most direct readout of the cellular phenotype, we hypothesized that comparing methylotrophic and nonmethylotrophic metabolic states at the flux level would yield new insights into MGA3 metabolism. In this study, we designed and performed a C metabolic flux analysis (C-MFA) of the facultative methylotroph MGA3 growing on methanol, mannitol, and arabitol to compare the associated metabolic states. On methanol, results showed a greater flux in the ribulose monophosphate (RuMP) pathway than in the tricarboxylic acid (TCA) cycle, thus validating previous findings on the methylotrophy of New insights related to the utilization of cyclic RuMP versus linear dissimilation pathways and between the RuMP variants were generated. Importantly, we demonstrated that the linear detoxification pathways and the malic enzyme shared with the pentose phosphate pathway have an important role in cofactor regeneration. Finally, we identified, for the first time, the metabolic pathway used to assimilate arabitol. Overall, those data provide a better understanding of this strain under various environmental conditions. Methanol is inexpensive, is easy to transport, and can be produced both from renewable and from fossil resources without mobilizing arable lands. As such, it is regarded as a potential carbon source to transition toward a greener industrial chemistry. Metabolic engineering of bacteria and yeast able to efficiently consume methanol is expected to provide cell factories that will transform methanol into higher-value chemicals in the so-called methanol economy. Toward that goal, the study of natural methylotrophs such as is critical to understand the origin of their efficient methylotrophy. This knowledge will then be leveraged to transform such natural strains into new cell factories or to design methylotrophic capability in other strains already used by the industry.

摘要

MGA3是一种耐热且生长相对较快的甲基营养菌,能够分泌大量谷氨酸和赖氨酸。这些天然特性使其成为新型工业底盘生物的良好候选者,尤其是在基于甲醇的经济模式中。有趣的是,已知唯一能支持其作为碳源和能源唯一来源生长的底物是甲醇、甘露醇,以及在较小程度上的葡萄糖和阿拉伯糖醇。由于通量组学提供了细胞表型最直接的读数,我们推测在通量水平上比较甲基营养型和非甲基营养型代谢状态将为MGA3的代谢带来新的见解。在本研究中,我们设计并进行了兼性甲基营养菌MGA3在甲醇、甘露醇和阿拉伯糖醇上生长的碳代谢通量分析(C-MFA),以比较相关的代谢状态。在甲醇上,结果显示磷酸戊糖途径(RuMP)中的通量大于三羧酸(TCA)循环中的通量(因此验证了之前关于其甲基营养特性的发现),产生了与环状RuMP利用与线性异化途径以及RuMP变体之间相关的新见解。重要的是,我们证明了与磷酸戊糖途径共享的线性解毒途径和苹果酸酶在辅因子再生中具有重要作用。最后,我们首次确定了同化阿拉伯糖醇所使用的代谢途径。总体而言,这些数据有助于更好地理解该菌株在各种环境条件下的情况。甲醇价格低廉、易于运输,并且可以从可再生资源和化石资源中生产,无需占用耕地。因此,它被视为向更绿色工业化学转变的潜在碳源。能够有效消耗甲醇的细菌和酵母的代谢工程有望提供细胞工厂,在所谓的甲醇经济中将甲醇转化为高价值化学品。为了实现这一目标,研究像MGA这样的天然甲基营养菌对于理解其高效甲基营养特性的起源至关重要。这些知识随后将被用于将此类天然菌株转化为新的细胞工厂或在该行业已经使用的其他菌株中设计甲基营养能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/259d/7511216/249a9954ec0f/mSystems.00745-20-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验