Suppr超能文献

为什么快速生长的细菌会进入溢出代谢?测试膜房地产假说。

Why Do Fast-Growing Bacteria Enter Overflow Metabolism? Testing the Membrane Real Estate Hypothesis.

机构信息

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, USA.

Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, USA; Departments of Chemistry, and Physics and Astronomy, Stony Brook University, Stony Brook, NY, USA.

出版信息

Cell Syst. 2017 Aug 23;5(2):95-104. doi: 10.1016/j.cels.2017.06.005. Epub 2017 Jul 26.

Abstract

Bacteria and other cells show a puzzling behavior. At high growth rates, E. coli switch from respiration (which is ATP-efficient) to using fermentation for additional ATP (which is inefficient). This overflow metabolism results in a several-fold decrease in ATP produced per glucose molecule provided as food. By integrating diverse types of experimental data into a simple biophysical model, we give evidence that this onset is the result of the membrane real estate hypothesis: Fast growth drives cells to be bigger, reducing their surface-to-volume ratios. This decreases the membrane area available for respiratory proteins despite growing demand, causing increased crowding. Only when respiratory proteins reach their crowding limit does the cell activate fermentation, since fermentation allows faster ATP production per unit membrane area. Surface limitation thus creates a Pareto trade-off between membrane efficiency and ATP yield that links metabolic choice to the size and shape of a bacterial cell. By exploring the predictions that emerge from this trade-off, we show how consideration of molecular structures, energetics, rates, and equilibria can provide important insight into cellular behavior.

摘要

细菌和其他细胞表现出一种令人费解的行为。在高生长率下,大肠杆菌从呼吸(这是高效的 ATP 产生方式)切换到使用发酵来产生额外的 ATP(这是低效的)。这种溢出代谢导致每提供一个葡萄糖分子作为食物时产生的 ATP 减少几倍。通过将多种类型的实验数据整合到一个简单的生物物理模型中,我们提供的证据表明,这种起始是膜地产假说的结果:快速生长驱使细胞变大,降低它们的表面积与体积比。这尽管有不断增长的需求,但减少了用于呼吸蛋白的膜面积,导致拥挤加剧。只有当呼吸蛋白达到拥挤极限时,细胞才会激活发酵,因为发酵允许单位膜面积更快地产生 ATP。因此,表面限制在膜效率和 ATP 产量之间创造了一种帕累托权衡,将代谢选择与细菌细胞的大小和形状联系起来。通过探索这种权衡所产生的预测,我们展示了考虑分子结构、能量学、速率和平衡如何为细胞行为提供重要的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验