Suppr超能文献

线粒体功能障碍与衰老中的心磷脂、过羟基自由基和脂质过氧化作用

Cardiolipin, Perhydroxyl Radicals, and Lipid Peroxidation in Mitochondrial Dysfunctions and Aging.

作者信息

Panov Alexander V, Dikalov Sergey I

机构信息

Federal Scientific Center for Family Health and Human Reproduction Problems, 16 Timiryasev str., Irkutsk, 664003, Russian Federation, Russia.

Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.

出版信息

Oxid Med Cell Longev. 2020 Sep 8;2020:1323028. doi: 10.1155/2020/1323028. eCollection 2020.

Abstract

Mitochondrial dysfunctions caused by oxidative stress are currently regarded as the main cause of aging. Accumulation of mutations and deletions of mtDNA is a hallmark of aging. So far, however, there is no evidence that most studied oxygen radicals are directly responsible for mutations of mtDNA. Oxidative damages to cardiolipin (CL) and phosphatidylethanolamine (PEA) are also hallmarks of oxidative stress, but the mechanisms of their damage remain obscure. CL is the only phospholipid present almost exclusively in the inner mitochondrial membrane (IMM) where it is responsible, together with PEA, for the maintenance of the superstructures of oxidative phosphorylation enzymes. CL has negative charges at the headgroups and due to specific localization at the negative curves of the IMM, it creates areas with the strong negative charge where local pH may be several units lower than in the surrounding bulk phases. At these sites with the higher acidity, the chance of protonation of the superoxide radical (O ), generated by the respiratory chain, is much higher with the formation of the highly reactive hydrophobic perhydroxyl radical (HO ). HO specifically reacts with the double bonds of polyunsaturated fatty acids (PUFA) initiating the isoprostane pathway of lipid peroxidation. Because HO is formed close to CL aggregates and PEA, it causes peroxidation of the linoleic acid in CL and also damages PEA. This causes disruption of the structural and functional integrity of the respirosomes and ATP synthase. We provide evidence that in elderly individuals with metabolic syndrome (MetS), fatty acids become the major substrates for production of ATP and this may increase several-fold generation of O and thus HO . We conclude that MetS accelerates aging and the mitochondrial dysfunctions are caused by the HO -induced direct oxidation of CL and the isoprostane pathway of lipid peroxidation (IPLP). The toxic products of IPLP damage not only PEA, but also mtDNA and OXPHOS proteins. This results in gradual disruption of the structural and functional integrity of mitochondria and cells.

摘要

由氧化应激引起的线粒体功能障碍目前被认为是衰老的主要原因。线粒体DNA(mtDNA)突变和缺失的积累是衰老的一个标志。然而,到目前为止,没有证据表明大多数研究的氧自由基直接导致mtDNA突变。心磷脂(CL)和磷脂酰乙醇胺(PEA)的氧化损伤也是氧化应激的标志,但其损伤机制仍不清楚。CL是几乎唯一仅存在于线粒体内膜(IMM)中的磷脂,它与PEA一起负责维持氧化磷酸化酶的超结构。CL在头部基团带有负电荷,由于其在IMM负曲率处的特定定位,它创造了带有强负电荷的区域,其中局部pH可能比周围本体相低几个单位。在这些酸度较高的位点,呼吸链产生的超氧自由基(O )质子化的机会要高得多,会形成高反应性的疏水过羟基自由基(HO )。HO 特异性地与多不饱和脂肪酸(PUFA)的双键反应,启动脂质过氧化的异前列腺素途径。由于HO 是在CL聚集体和PEA附近形成的,它会导致CL中亚油酸的过氧化,也会损害PEA。这会导致呼吸体和ATP合酶的结构和功能完整性受到破坏。我们提供的证据表明,在患有代谢综合征(MetS)的老年人中,脂肪酸成为产生ATP的主要底物,这可能会使O 的生成增加几倍,从而也增加HO 的生成。我们得出结论,MetS加速衰老,线粒体功能障碍是由HO 诱导的CL直接氧化和脂质过氧化的异前列腺素途径(IPLP)引起的。IPLP的有毒产物不仅会损害PEA,还会损害mtDNA和氧化磷酸化蛋白。这会导致线粒体和细胞的结构和功能完整性逐渐受到破坏。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5ad/7499269/1622a20b6d7a/OMCL2020-1323028.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验