Suppr超能文献

在丘脑深部脑刺激期间,运动皮层中依赖频率的尖峰模式变化。

Frequency-dependent spike-pattern changes in motor cortex during thalamic deep brain stimulation.

机构信息

Department of Biomedical Engineering, University of Minnesota, Minneapolis.

Institute for Translational Neuroscience, University of Minnesota, Minneapolis.

出版信息

J Neurophysiol. 2020 Nov 1;124(5):1518-1529. doi: 10.1152/jn.00198.2020. Epub 2020 Sep 23.

Abstract

The cerebellar-receiving area of the motor thalamus is the primary anatomical target for treating essential tremor with deep brain stimulation (DBS). Although neuroimaging studies have shown that higher stimulation frequencies in this target correlate with increased cortical metabolic activity, less is known about the cellular-level functional changes that occur in the primary motor cortex (M1) with thalamic stimulation and how these changes depend on the frequency of DBS. In this study, we used a preclinical animal model of DBS to collect single-unit spike recordings in M1 before, during, and after DBS targeting the cerebellar-receiving area of the motor thalamus (VPLo, nucleus ventralis posterior lateralis pars oralis). The effects of VPLo-DBS on M1 spike rates, interspike interval entropy, and peristimulus phase-locking were compared across stimulus pulse train frequencies ranging from 10 to 130 Hz. Although VPLo-DBS modulated the spike rates of 20-50% of individual M1 cells in a frequency-dependent manner, the population-level average spike rate only weakly depended on stimulation frequency. In contrast, the population-level entropy measure showed a pronounced decrease with high-frequency stimulation, caused by a subpopulation of cells that exhibited strong phase-locking and general spike-pattern regularization. Contrarily, low-frequency stimulation induced an entropy increase (spike-pattern disordering) in a relatively large portion of the recorded population, which diminished with higher stimulation frequencies. These results also suggest that changes in phase-locking and spike-pattern entropy are not necessarily equivalent pattern phenomena, but rather that they should both be weighed when quantifying stimulation-induced spike-pattern changes. The network mechanisms of thalamic deep brain stimulation (DBS) are not well understood at the cellular level. This study investigated the neuronal firing rate and pattern changes in the motor cortex resulting from stimulation of the cerebellar-receiving area of the motor thalamus. We showed that there is a nonintuitive relationship between general entropy-based spike-pattern measures and phase-locked regularization to DBS.

摘要

小脑接受区的运动丘脑是深部脑刺激(DBS)治疗原发性震颤的主要解剖靶点。尽管神经影像学研究表明,该靶点的刺激频率越高与皮质代谢活性的增加相关,但对于丘脑刺激时初级运动皮层(M1)中发生的细胞水平功能变化以及这些变化如何依赖于 DBS 的频率知之甚少。在这项研究中,我们使用了 DBS 的临床前动物模型,在刺激运动丘脑的小脑接受区(VPLo,腹后外侧核腹侧后外侧核 pars oralis)之前、期间和之后,在 M1 中收集单个单元尖峰记录。比较了 VPLo-DBS 对刺激脉冲串频率范围为 10 至 130 Hz 时 M1 尖峰率、尖峰间隔间隔熵和刺激相位锁定的影响。尽管 VPLo-DBS 以频率依赖性方式调制了 20-50%的个体 M1 细胞的尖峰率,但群体水平平均尖峰率仅与刺激频率弱相关。相比之下,群体水平熵测量值显示出随着高频刺激而明显降低,这是由表现出强烈的相位锁定和一般尖峰模式规则化的细胞亚群引起的。相反,低频刺激在记录的大部分群体中诱导了熵的增加(尖峰模式混乱),随着刺激频率的增加而减小。这些结果还表明,锁相和尖峰模式熵的变化不一定是等效的模式现象,而是在量化刺激诱导的尖峰模式变化时都应加以权衡。丘脑深部脑刺激(DBS)的网络机制在细胞水平上尚不清楚。本研究调查了刺激运动丘脑的小脑接受区引起的运动皮层神经元放电率和模式变化。我们表明,基于一般熵的尖峰模式测量值与 DBS 的锁相正则化之间存在非直观的关系。

相似文献

1
Frequency-dependent spike-pattern changes in motor cortex during thalamic deep brain stimulation.
J Neurophysiol. 2020 Nov 1;124(5):1518-1529. doi: 10.1152/jn.00198.2020. Epub 2020 Sep 23.
2
Modulation of Neuronal Activity in the Motor Thalamus during GPi-DBS in the MPTP Nonhuman Primate Model of Parkinson's Disease.
Brain Stimul. 2017 Jan-Feb;10(1):126-138. doi: 10.1016/j.brs.2016.10.005. Epub 2016 Oct 11.
3
Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS.
J Neurophysiol. 2015 Aug;114(2):825-34. doi: 10.1152/jn.00259.2015. Epub 2015 Jun 17.
4
Subthalamic nucleus stimulation modulates thalamic neuronal activity.
J Neurosci. 2008 Nov 12;28(46):11916-24. doi: 10.1523/JNEUROSCI.2027-08.2008.
6
Changes in cortical excitability with thalamic deep brain stimulation.
Neurology. 2005 Jun 14;64(11):1913-9. doi: 10.1212/01.WNL.0000163985.89444.DD.
7
Frequency-dependent functional neuromodulatory effects on the motor network by ventral lateral thalamic deep brain stimulation in swine.
Neuroimage. 2015 Jan 15;105:181-8. doi: 10.1016/j.neuroimage.2014.09.064. Epub 2014 Oct 14.
8
Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson's disease.
J Neurophysiol. 2008 Nov;100(5):2807-18. doi: 10.1152/jn.90763.2008. Epub 2008 Sep 10.
9
Spatiotemporal dynamics of cortical perfusion in response to thalamic deep brain stimulation.
Neuroimage. 2016 Feb 1;126:131-9. doi: 10.1016/j.neuroimage.2015.11.017. Epub 2015 Nov 11.
10
Tremor reduction and modeled neural activity during cycling thalamic deep brain stimulation.
Clin Neurophysiol. 2012 May;123(5):1044-52. doi: 10.1016/j.clinph.2011.07.052. Epub 2011 Oct 5.

引用本文的文献

1
Nonlinear analysis of neuronal firing modulated by sinusoidal stimulation at axons in rat hippocampus.
Front Comput Neurosci. 2024 Aug 30;18:1388224. doi: 10.3389/fncom.2024.1388224. eCollection 2024.
2
Stimulation-mediated reverse engineering of silent neural networks.
J Neurophysiol. 2023 Jun 1;129(6):1505-1514. doi: 10.1152/jn.00100.2023. Epub 2023 May 24.
3
Considerations Using Harmaline for a Primate Model of Tremor.
Tremor Other Hyperkinet Mov (N Y). 2021 Sep 13;11:35. doi: 10.5334/tohm.634. eCollection 2021.

本文引用的文献

1
Direct Activation of Primary Motor Cortex during Subthalamic But Not Pallidal Deep Brain Stimulation.
J Neurosci. 2020 Mar 4;40(10):2166-2177. doi: 10.1523/JNEUROSCI.2480-19.2020. Epub 2020 Feb 4.
2
Altered Primary Motor Cortex Neuronal Activity in a Rat Model of Harmaline-Induced Tremor During Thalamic Deep Brain Stimulation.
Front Cell Neurosci. 2019 Oct 15;13:448. doi: 10.3389/fncel.2019.00448. eCollection 2019.
3
Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans.
J Neurosci. 2018 Oct 24;38(43):9129-9141. doi: 10.1523/JNEUROSCI.1327-18.2018. Epub 2018 Sep 10.
4
Development of Harmaline-induced Tremor in a Swine Model.
Tremor Other Hyperkinet Mov (N Y). 2018 Mar 13;8:532. doi: 10.7916/D8J68TV7. eCollection 2018.
5
Deep brain stimulation induces sparse distributions of locally modulated neuronal activity.
Sci Rep. 2018 Feb 1;8(1):2062. doi: 10.1038/s41598-018-20428-8.
7
Phase Dependency of the Human Primary Motor Cortex and Cholinergic Inhibition Cancelation During Beta tACS.
Cereb Cortex. 2016 Oct;26(10):3977-90. doi: 10.1093/cercor/bhw245. Epub 2016 Aug 13.
8
Multimodal 7T Imaging of Thalamic Nuclei for Preclinical Deep Brain Stimulation Applications.
Front Neurosci. 2016 Jun 10;10:264. doi: 10.3389/fnins.2016.00264. eCollection 2016.
9
Functional correlates of the therapeutic and adverse effects evoked by thalamic stimulation for essential tremor.
Brain. 2016 Aug;139(Pt 8):2198-210. doi: 10.1093/brain/aww145. Epub 2016 Jun 21.
10
Spatiotemporal dynamics of cortical perfusion in response to thalamic deep brain stimulation.
Neuroimage. 2016 Feb 1;126:131-9. doi: 10.1016/j.neuroimage.2015.11.017. Epub 2015 Nov 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验