Department of Cell Biology and Neuroscience, Rowan School of Osteopathic Medicine, Stratford, New Jersey.
Health Sciences, Cleveland State University, Cleveland, Ohio.
J Neurophysiol. 2020 Dec 1;124(6):1743-1753. doi: 10.1152/jn.00409.2020. Epub 2020 Sep 23.
Understanding the interactions between neural and musculoskeletal systems is key to identifying mechanisms of functional failure. Mammalian swallowing is a complex, poorly understood motor process. Lesion of the recurrent laryngeal nerve, a sensory and motor nerve of the upper airway, results in airway protection failure (liquid entry into the airway) during swallowing through an unknown mechanism. We examined how muscle and kinematic changes after recurrent laryngeal nerve lesion relate to airway protection in eight infant pigs. We tested two hypotheses: ) kinematics and muscle function will both change in response to lesion in swallows with and without airway protection failure, and ) differences in both kinematics and muscle function will predict whether airway protection failure occurs in lesion and intact pigs. We recorded swallowing with high-speed videofluoroscopy and simultaneous electromyography of oropharyngeal muscles pre- and postrecurrent laryngeal nerve lesion. Lesion changed the relationship between airway protection and timing of tongue and hyoid movements. Changes in onset and duration of hyolaryngeal muscles postlesion were less associated with airway protection outcomes. The tongue and hyoid kinematics all predicted airway protection outcomes differently pre- and postlesion. Onset and duration of activity in only one infrahyoid and one suprahyoid muscle showed a change in predictive relationship pre- and postlesion. Kinematics of the tongue and hyoid more directly reflect changes in airway protections pre- and postlesion than muscle activation patterns. Identifying mechanisms of airway protection failure requires specific functional hypotheses that link neural motor outputs to muscle activation to specific movements. Kinematic and muscle activity patterns of oropharyngeal structures used in swallowing show different patterns of response to lesion of the recurrent laryngeal nerve. Understanding how muscles act on structures to produce behavior is necessary to understand neural control.
了解神经和肌肉骨骼系统之间的相互作用是确定功能衰竭机制的关键。哺乳动物的吞咽是一个复杂的、尚未被充分理解的运动过程。喉返神经(上气道的感觉和运动神经)的损伤会导致吞咽时气道保护失败(液体进入气道),其机制尚不清楚。我们研究了喉返神经损伤后肌肉和运动学的变化与气道保护之间的关系,研究对象是 8 头仔猪。我们提出了两个假设:1)在有和没有气道保护失败的吞咽中,肌肉和运动学都会因损伤而发生变化;2)运动学和肌肉功能的差异将预测气道保护失败是否会发生在损伤和完整的猪中。我们在喉返神经损伤前后,使用高速荧光透视法和口咽肌肉的同步肌电图记录吞咽情况。损伤改变了气道保护与舌和舌骨运动时间的关系。损伤后,舌骨和喉咽肌的起始和持续时间的变化与气道保护结果的相关性较小。损伤前后,舌和舌骨的运动学都能不同程度地预测气道保护结果。仅在下颌舌骨肌和舌骨上肌群的活动起始和持续时间在损伤前后的预测关系发生了变化。损伤前后,只有一块下颌舌骨肌和一块舌骨上肌群的活动起始和持续时间与预测关系发生了变化。损伤前后,舌和舌骨的运动学比肌肉活动模式更直接反映气道保护的变化。识别气道保护失败的机制需要特定的功能假设,将神经运动输出与肌肉激活与特定的运动联系起来。吞咽过程中口咽结构的运动学和肌肉活动模式对喉返神经损伤的反应不同。了解肌肉如何作用于结构以产生行为对于理解神经控制是必要的。