Orsbon Courtney P, Gidmark Nicholas J, Ross Callum F
Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois 60637.
Biology Department, Knox College, Galesburg, Illinois 61401.
Anat Rec (Hoboken). 2018 Feb;301(2):378-406. doi: 10.1002/ar.23714.
The tradeoff between force and velocity in skeletal muscle is a fundamental constraint on vertebrate musculoskeletal design (form:function relationships). Understanding how and why different lineages address this biomechanical problem is an important goal of vertebrate musculoskeletal functional morphology. Our ability to answer questions about the different solutions to this tradeoff has been significantly improved by recent advances in techniques for quantifying musculoskeletal morphology and movement. Herein, we have three objectives: (1) review the morphological and physiological parameters that affect muscle function and how these parameters interact; (2) discuss the necessity of integrating morphological and physiological lines of evidence to understand muscle function and the new, high resolution imaging technologies that do so; and (3) present a method that integrates high spatiotemporal resolution motion capture (XROMM, including its corollary fluoromicrometry), high resolution soft tissue imaging (diceCT), and electromyography to study musculoskeletal dynamics in vivo. The method is demonstrated using a case study of in vivo primate hyolingual biomechanics during chewing and swallowing. A sensitivity analysis demonstrates that small deviations in reconstructed hyoid muscle attachment site location introduce an average error of 13.2% to in vivo muscle kinematics. The observed hyoid and muscle kinematics suggest that hyoid elevation is produced by multiple muscles and that fascicle rotation and tendon strain decouple fascicle strain from hyoid movement and whole muscle length. Lastly, we highlight current limitations of these techniques, some of which will likely soon be overcome through methodological improvements, and some of which are inherent. Anat Rec, 301:378-406, 2018. © 2018 Wiley Periodicals, Inc.
骨骼肌中力量与速度之间的权衡是脊椎动物肌肉骨骼设计(形态与功能关系)的一个基本限制因素。理解不同谱系如何以及为何解决这一生物力学问题是脊椎动物肌肉骨骼功能形态学的一个重要目标。近期在量化肌肉骨骼形态和运动的技术方面取得的进展显著提高了我们回答有关这一权衡不同解决方案问题的能力。在此,我们有三个目标:(1)回顾影响肌肉功能的形态学和生理学参数以及这些参数如何相互作用;(2)讨论整合形态学和生理学证据以理解肌肉功能的必要性以及能够做到这一点的新型高分辨率成像技术;(3)提出一种整合高时空分辨率运动捕捉(XROMM,包括其衍生的荧光显微测量法)、高分辨率软组织成像(diceCT)和肌电图来研究体内肌肉骨骼动力学的方法。该方法通过对灵长类动物在咀嚼和吞咽过程中舌骨生物力学的体内案例研究进行了演示。敏感性分析表明,重建的舌骨肌肉附着位点位置的微小偏差会给体内肌肉运动学带来13.2%的平均误差。观察到的舌骨和肌肉运动学表明,舌骨抬高是由多块肌肉产生的,并且肌束旋转和肌腱应变使肌束应变与舌骨运动和整个肌肉长度解耦。最后,我们强调了这些技术当前的局限性,其中一些可能很快会通过方法改进得以克服,而一些则是固有的。《解剖学记录》,301:378 - 406,2018年。© 2018威利期刊公司。