Suppr超能文献

澳大利亚小麦叶锈病菌分离物的基因表达、SNP、InDel 和 CNV 的综合分析鉴定候选无毒基因。

Integrated Analysis of Gene Expression, SNP, InDel, and CNV Identifies Candidate Avirulence Genes in Australian Isolates of the Wheat Leaf Rust Pathogen .

机构信息

Plant Breeding Institute, School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW 2006, Australia.

出版信息

Genes (Basel). 2020 Sep 21;11(9):1107. doi: 10.3390/genes11091107.

Abstract

The leaf rust pathogen, (), threatens global wheat production. The deployment of leaf rust () resistance (R) genes in wheat varieties is often followed by the development of matching virulence in due to presumed changes in avirulence (Avr) genes in . Identifying such Avr genes is a crucial step to understand the mechanisms of wheat-rust interactions. This study is the first to develop and apply an integrated framework of gene expression, single nucleotide polymorphism (SNP), insertion/deletion (InDel), and copy number variation (CNV) analysis in a rust fungus and identify candidate avirulence genes. Using a long-read based genome assembly of an isolate of ('Pt104') as the reference, whole-genome resequencing data of 12 pathotypes derived from three lineages Pt104, Pt53, and Pt76 were analyzed. Candidate avirulence genes were identified by correlating virulence profiles with small variants (SNP and InDel) and CNV, and RNA-seq data of an additional three isolates to validate expression of genes encoding secreted proteins (SPs). Out of the annotated 29,043 genes, 2392 genes were selected as SP genes with detectable expression levels. Small variant comparisons between the isolates identified 27-40 candidates and CNV analysis identified 14-31 candidates for each Avr gene, which when combined, yielded the final 40, 64, and 69 candidates for , and , respectively. Taken together, our results will facilitate future work on experimental validation and cloning of Avr genes. In addition, the integrated framework of data analysis that we have developed and reported provides a more comprehensive approach for Avr gene mining than is currently available.

摘要

叶锈病病原菌 () 威胁着全球小麦生产。在小麦品种中部署叶锈病 () 抗性 (R) 基因后,由于假定 () 中的无毒 (Avr) 基因发生变化,通常会导致匹配的毒性发展。鉴定此类 Avr 基因是了解小麦-锈病相互作用机制的关键步骤。本研究首次开发并应用了一种综合的基因表达、单核苷酸多态性 (SNP)、插入/缺失 (InDel) 和拷贝数变异 (CNV) 分析框架,用于鉴定锈菌中的候选无毒基因。使用作为参考的 () 分离株的基于长读的基因组组装,对来自三个谱系 Pt104、Pt53 和 Pt76 的 12 个致病型的全基因组重测序数据进行了分析。通过将毒力谱与小变异 (SNP 和 InDel) 和 CNV 以及另外三个 () 分离株的 RNA-seq 数据相关联,鉴定候选无毒基因,并验证编码分泌蛋白 (SPs) 的基因的表达。在注释的 29043 个基因中,选择了 2392 个基因作为具有可检测表达水平的 SP 基因。在分离株之间的小变异比较中,每个 Avr 基因分别鉴定出 27-40 个候选基因和 CNV 分析鉴定出 14-31 个候选基因,将这些候选基因组合起来,分别得到了最终的 40、64 和 69 个候选基因,用于 、 和 。总之,我们的结果将有助于未来对无毒基因的实验验证和克隆工作。此外,我们开发和报告的综合数据分析框架比目前可用的方法提供了更全面的无毒基因挖掘方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3041/7564353/e08d1b6f4902/genes-11-01107-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验