Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region, Russia.
Sci Rep. 2020 Sep 23;10(1):15473. doi: 10.1038/s41598-020-72399-4.
Due to breakthroughs in RNAi and genome editing methods in the past decade, it is now easier than ever to study fine details of protein synthesis in animal models. However, most of our understanding of translation comes from unicellular organisms and cultured mammalian cells. In this study, we demonstrate the feasibility of perturbing protein synthesis in a mouse liver by targeting translation elongation factor 2 (eEF2) with RNAi. We were able to achieve over 90% knockdown efficacy and maintain it for 2 weeks effectively slowing down the rate of translation elongation. As the total protein yield declined, both proteomics and ribosome profiling assays showed robust translational upregulation of ribosomal proteins relative to other proteins. Although all these genes bear the TOP regulatory motif, the branch of the mTOR pathway responsible for translation regulation was not activated. Paradoxically, coordinated translational upregulation of ribosomal proteins only occurred in the liver but not in murine cell culture. Thus, the upregulation of ribosomal transcripts likely occurred via passive mTOR-independent mechanisms. Impaired elongation sequesters ribosomes on mRNA and creates a shortage of free ribosomes. This leads to preferential translation of transcripts with high initiation rates such as ribosomal proteins. Furthermore, severe eEF2 shortage reduces the negative impact of positively charged amino acids frequent in ribosomal proteins on ribosome progression.
由于过去十年中 RNAi 和基因组编辑方法的突破,现在比以往任何时候都更容易在动物模型中研究蛋白质合成的精细细节。然而,我们对翻译的大部分理解来自于单细胞生物和培养的哺乳动物细胞。在这项研究中,我们通过 RNAi 靶向翻译延伸因子 2 (eEF2) 证明了在小鼠肝脏中干扰蛋白质合成的可行性。我们能够实现超过 90%的敲低效果,并有效地将其维持 2 周,从而显著减缓翻译延伸的速度。随着总蛋白质产量的下降,蛋白质组学和核糖体分析显示核糖体蛋白相对于其他蛋白质进行了强有力的翻译上调。尽管所有这些基因都带有 TOP 调节基序,但负责翻译调节的 mTOR 途径分支并未被激活。矛盾的是,核糖体蛋白的协调翻译上调仅发生在肝脏中,而不是在鼠细胞培养物中。因此,核糖体转录物的上调可能是通过 mTOR 独立的被动机制发生的。延伸受阻会将核糖体隔离在 mRNA 上,并导致游离核糖体短缺。这导致优先翻译起始速率较高的转录物,如核糖体蛋白。此外,严重的 eEF2 短缺减少了核糖体蛋白中频繁出现的带正电荷氨基酸对核糖体进展的负面影响。