Howard Hughes Medical Institute (HHMI); Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Howard Hughes Medical Institute (HHMI); Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
Mol Cell. 2019 Mar 7;73(5):959-970.e5. doi: 10.1016/j.molcel.2018.12.009. Epub 2019 Jan 24.
Ribosomes undergo substantial conformational changes during translation elongation to accommodate incoming aminoacyl-tRNAs and translocate along the mRNA template. We used multiple elongation inhibitors and chemical probing to define ribosome conformational states corresponding to differently sized ribosome-protected mRNA fragments (RPFs) generated by ribosome profiling. We show, using various genetic and environmental perturbations, that short 20-22 or classical 27-29 nucleotide RPFs correspond to ribosomes with open or occupied ribosomal A sites, respectively. These distinct states of translation elongation are readily discerned by ribosome profiling in all eukaryotes we tested, including fungi, worms, and mammals. This high-resolution ribosome profiling approach reveals mechanisms of translation-elongation arrest during distinct stress conditions. Hyperosmotic stress inhibits translocation through Rck2-dependent eEF2 phosphorylation, whereas oxidative stress traps ribosomes in a pre-translocation state, independent of Rck2-driven eEF2 phosphorylation. These results provide insights and approaches for defining the molecular events that impact translation elongation throughout biology.
核糖体在翻译延伸过程中经历大量构象变化,以适应进入的氨酰基-tRNA 并沿着 mRNA 模板移位。我们使用多种延伸抑制剂和化学探测来定义与核糖体图谱产生的不同大小的核糖体保护的 mRNA 片段(RPF)相对应的核糖体构象状态。我们通过各种遗传和环境扰动表明,短的 20-22 个或经典的 27-29 个核苷酸的 RPF 分别对应于开放或占据核糖体 A 位的核糖体。我们测试的所有真核生物,包括真菌、蠕虫和哺乳动物,都可以通过核糖体图谱轻松区分这些不同的翻译延伸状态。这种高分辨率核糖体图谱方法揭示了在不同应激条件下翻译延伸停滞的机制。高渗应激通过 Rck2 依赖性 eEF2 磷酸化抑制易位,而氧化应激使核糖体在易位前状态下捕获,这与 Rck2 驱动的 eEF2 磷酸化无关。这些结果为定义影响整个生物学中翻译延伸的分子事件提供了思路和方法。