文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RNA 结合蛋白 FMR1 控制炎症期间选择性细胞外体 miRNA 货物的加载。

The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation.

机构信息

Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS.

Liver Center, University of Kansas Medical Center, Kansas City KS.

出版信息

J Cell Biol. 2020 Oct 5;219(10). doi: 10.1083/jcb.201912074.


DOI:10.1083/jcb.201912074
PMID:32970791
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7659717/
Abstract

Cells respond to inflammatory disease states by releasing exosomes containing highly specific protein and RNA cargos, but how inflammation alters cargo specificity and secretion of exosomes is unknown. We show that increases in exosome secretion induced by either viral infection or LPS/ATP exposure result from inflammasome activation and subsequent caspase-1-dependent cleavage of the trafficking adaptor protein RILP. This cleaved form of RILP promotes the movement of multivesicular bodies toward the cell periphery and induces selective exosomal miRNA cargo loading. We have identified a common short sequence motif present in miRNAs that are selectively loaded into exosomes after RILP cleavage. This motif binds the RNA binding protein FMR1 and directs miRNA loading into exosomes via interaction with components of the ESCRT (endosomal sorting complex required for transport) pathway. These results indicate that inflammasome-mediated RILP cleavage, and sequence-specific interactions between miRNAs and FMR1, play a significant role in exosome cargo loading and enhanced secretion during cellular inflammatory responses.

摘要

细胞通过释放含有高度特异性蛋白和 RNA 货物的外泌体来响应炎症性疾病状态,但炎症如何改变货物特异性和外泌体的分泌尚不清楚。我们表明,病毒感染或 LPS/ATP 暴露诱导的外泌体分泌增加是由炎症小体激活以及随后的半胱天冬酶-1 依赖性切割运输衔接蛋白 RILP 引起的。这种裂解形式的 RILP 促进多泡体向细胞边缘移动,并诱导选择性的外泌体 miRNA 货物加载。我们已经确定了一种在 RILP 切割后被选择性加载到外泌体中的 miRNA 中存在的常见短序列基序。该基序与 RNA 结合蛋白 FMR1 结合,并通过与内体分选复合物必需的运输(endosomal sorting complex required for transport)途径的成分相互作用,将 miRNA 加载到外泌体中。这些结果表明,炎症小体介导的 RILP 切割,以及 miRNA 和 FMR1 之间的序列特异性相互作用,在外泌体货物加载和细胞炎症反应期间增强的外泌体分泌中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/62dac36dce25/JCB_201912074_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/f2bcffff09a1/JCB_201912074_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/331a0456b506/JCB_201912074_FigS1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/c0f30a0a0f70/JCB_201912074_FigS2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/7659a2880e28/JCB_201912074_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/60df5ab48f0c/JCB_201912074_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/3fd23ae6279f/JCB_201912074_FigS3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/edf46536fcd1/JCB_201912074_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/e3c886a8c35f/JCB_201912074_FigS4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/62dac36dce25/JCB_201912074_Fig5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/f2bcffff09a1/JCB_201912074_Fig1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/331a0456b506/JCB_201912074_FigS1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/c0f30a0a0f70/JCB_201912074_FigS2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/7659a2880e28/JCB_201912074_Fig2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/60df5ab48f0c/JCB_201912074_Fig3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/3fd23ae6279f/JCB_201912074_FigS3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/edf46536fcd1/JCB_201912074_Fig4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/e3c886a8c35f/JCB_201912074_FigS4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b567/7659717/62dac36dce25/JCB_201912074_Fig5.jpg

相似文献

[1]
The RNA binding protein FMR1 controls selective exosomal miRNA cargo loading during inflammation.

J Cell Biol. 2020-10-5

[2]
TRIM25 dictates selective miRNA loading into extracellular vesicles during inflammation.

Sci Rep. 2023-12-22

[3]
Inflammasomes: Exosomal miRNAs loaded for action.

J Cell Biol. 2020-10-5

[4]
Multivesicular bodies associate with components of miRNA effector complexes and modulate miRNA activity.

Nat Cell Biol. 2009-9

[5]
Viral miRNAs exploiting the endosomal-exosomal pathway for intercellular cross-talk and immune evasion.

Biochim Biophys Acta. 2011

[6]
GPR143 controls ESCRT-dependent exosome biogenesis and promotes cancer metastasis.

Dev Cell. 2023-2-27

[7]
The RNA-Binding Protein SYNCRIP Is a Component of the Hepatocyte Exosomal Machinery Controlling MicroRNA Sorting.

Cell Rep. 2016-10-11

[8]
Two RNA-binding proteins mediate the sorting of miR223 from mitochondria into exosomes.

Elife. 2023-7-25

[9]
Exosomes as carriers transporting long non‑coding RNAs: Molecular characteristics and their function in cancer (Review).

Mol Med Rep. 2019-6-5

[10]
Efficient inhibition of infectious prions multiplication and release by targeting the exosomal pathway.

Cell Mol Life Sci. 2015-11

引用本文的文献

[1]
Prediction of exosomal miRNA-based biomarkers for liquid biopsy.

Sci Rep. 2025-8-25

[2]
Stem cell extracellular vesicles: a new dawn for anti-inflammatory treatment of neurodegenerative diseases.

Front Aging Neurosci. 2025-7-11

[3]
Prostate cancer cell-derived exosomes inhibit macrophage phagocytosis through EIF3B-mediated exosomal sorting of miR-100-5p.

Sci Rep. 2025-7-18

[4]
The RNA binding protein hnRNP A/B controls exosomal miR-27a-5p loading during Salmonella infection.

Poult Sci. 2025-6-26

[5]
Current trends in theranostic applications of extracellular vesicles in cancer.

Front Oncol. 2025-6-3

[6]
Multiplexed Data-Independent Acquisition (mDIA) to Profile Extracellular Vesicle Proteomes.

bioRxiv. 2025-5-15

[7]
Exosomes: their role and therapeutic potential in overcoming drug resistance of gastrointestinal cancers.

Front Oncol. 2025-5-13

[8]
Exosomal miRNAs in pancreatitis: Mechanisms and potential applications (Review).

Mol Med Rep. 2025-8

[9]
Egg exosome miR-145-5p decreases mitochondrial ROS to protect chicken embryo hepatocytes against apoptosis through targeting MAPK10.

J Anim Sci Biotechnol. 2025-5-24

[10]
Extracellular vesicles: From large-scale production and engineering to clinical applications.

J Tissue Eng. 2025-4-30

本文引用的文献

[1]
Reassessment of Exosome Composition.

Cell. 2019-4-4

[2]
Circulating Extracellular Vesicles and Their miR "Barcode" Differentiate Alcohol Drinkers With Liver Injury and Those Without Liver Injury in Severe Trauma Patients.

Front Med (Lausanne). 2019-2-25

[3]
Extracellular Vesicle Quantification and Characterization: Common Methods and Emerging Approaches.

Bioengineering (Basel). 2019-1-16

[4]
Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines.

J Extracell Vesicles. 2018-11-23

[5]
Extracellular vesicles in non-alcoholic and alcoholic fatty liver diseases.

Liver Res. 2018-3

[6]
From Inflammasome to Exosome-Does Extracellular Vesicle Secretion Constitute an Inflammasome-Dependent Immune Response?

Front Immunol. 2018-9-25

[7]
Caspase-1 regulates cellular trafficking via cleavage of the Rab7 adaptor protein RILP.

Biochem Biophys Res Commun. 2018-8-9

[8]
The RNA-binding complex ESCRT-II in eggs recognizes purine-rich sequences through its subunit, Vps25.

J Biol Chem. 2018-6-14

[9]
ImageJ2: ImageJ for the next generation of scientific image data.

BMC Bioinformatics. 2017-11-29

[10]
Ribonucleic artefacts: are some extracellular RNA discoveries driven by cell culture medium components?

J Extracell Vesicles. 2017-1-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索