Suppr超能文献

利用深度图神经网络实现快速灵活的蛋白质设计。

Fast and Flexible Protein Design Using Deep Graph Neural Networks.

机构信息

Department of Computer Science, University of Toronto, Toronto, ON M5S 3E1, Canada.

Donnelly Centre for Cellular and Biomolecular Research. University of Toronto, Toronto, ON M5S 3E1, Canada.

出版信息

Cell Syst. 2020 Oct 21;11(4):402-411.e4. doi: 10.1016/j.cels.2020.08.016. Epub 2020 Sep 23.

Abstract

Protein structure and function is determined by the arrangement of the linear sequence of amino acids in 3D space. We show that a deep graph neural network, ProteinSolver, can precisely design sequences that fold into a predetermined shape by phrasing this challenge as a constraint satisfaction problem (CSP), akin to Sudoku puzzles. We trained ProteinSolver on over 70,000,000 real protein sequences corresponding to over 80,000 structures. We show that our method rapidly designs new protein sequences and benchmark them in silico using energy-based scores, molecular dynamics, and structure prediction methods. As a proof-of-principle validation, we use ProteinSolver to generate sequences that match the structure of serum albumin, then synthesize the top-scoring design and validate it in vitro using circular dichroism. ProteinSolver is freely available at http://design.proteinsolver.org and https://gitlab.com/ostrokach/proteinsolver. A record of this paper's transparent peer review process is included in the Supplemental Information.

摘要

蛋白质的结构和功能是由线性氨基酸序列在 3D 空间中的排列决定的。我们表明,深度图神经网络 ProteinSolver 可以通过将这一挑战表述为约束满足问题 (CSP),类似于数独谜题,精确地设计出能折叠成预定形状的序列。我们在超过 7000 万个真实蛋白质序列上对 ProteinSolver 进行了训练,这些序列对应着超过 80000 个结构。我们表明,我们的方法可以快速设计新的蛋白质序列,并使用基于能量的评分、分子动力学和结构预测方法对其进行计算机模拟基准测试。作为一个原理验证,我们使用 ProteinSolver 生成与血清白蛋白结构匹配的序列,然后合成得分最高的设计,并使用圆二色性在体外进行验证。ProteinSolver 可在 http://design.proteinsolver.orghttps://gitlab.com/ostrokach/proteinsolver 上免费获得。本论文的透明同行评审过程记录包含在补充信息中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验