Suppr超能文献

胶体组装中的模式探测:多种分析技术的组合。

Pattern detection in colloidal assembly: A mosaic of analysis techniques.

机构信息

Laboratory of Biosensors and Bioelectronics, Institute for Biomedical Engineering, ETH Zurich, Gloriastrasse 35, 8092 Zurich, Switzerland.

出版信息

Adv Colloid Interface Sci. 2020 Oct;284:102252. doi: 10.1016/j.cis.2020.102252. Epub 2020 Sep 5.

Abstract

Characterization of the morphology, identification of patterns and quantification of order encountered in colloidal assemblies is essential for several reasons. First of all, it is useful to compare different self-assembly methods and assess the influence of different process parameters on the final colloidal pattern. In addition, casting light on the structures formed by colloidal particles can help to get better insight into colloidal interactions and understand phase transitions. Finally, the growing interest in colloidal assemblies in materials science for practical applications going from optoelectronics to biosensing imposes a thorough characterization of the morphology of colloidal assemblies because of the intimate relationship between morphology and physical properties (e.g. optical and mechanical) of a material. Several image analysis techniques developed to investigate images (acquired via scanning electron microscopy, digital video microscopy and other imaging methods) provide variegated and complementary information on the colloidal structures under scrutiny. However, understanding how to use such image analysis tools to get information on the characteristics of the colloidal assemblies may represent a non-trivial task, because it requires the combination of approaches drawn from diverse disciplines such as image processing, computational geometry and computational topology and their application to a primarily physico-chemical process. Moreover, the lack of a systematic description of such analysis tools makes it difficult to select the ones more suitable for the features of the colloidal assembly under examination. In this review we provide a methodical and extensive description of real-space image analysis tools by explaining their principles and their application to the investigation of two-dimensional colloidal assemblies with different morphological characteristics.

摘要

从多个原因来看,对胶体组装体的形貌进行特征描述、识别模式和量化有序性是至关重要的。首先,这对于比较不同的自组装方法和评估不同工艺参数对最终胶体图案的影响非常有用。此外,阐明胶体颗粒形成的结构有助于更好地了解胶体相互作用和理解相变。最后,由于形态与材料的物理性质(例如光学和机械性质)之间存在密切关系,胶体组装体在材料科学中的实际应用(从光电学到生物传感)方面的兴趣日益浓厚,这就需要对胶体组装体的形态进行彻底的特征描述。为了研究图像(通过扫描电子显微镜、数字视频显微镜和其他成像方法获取),已经开发出了几种图像分析技术,这些技术提供了关于受关注的胶体结构的各种且互补的信息。然而,了解如何使用这些图像分析工具来获取有关胶体组装体特征的信息可能是一项具有挑战性的任务,因为它需要将图像处理、计算几何和计算拓扑等不同学科的方法结合起来,并将其应用于主要的物理化学过程中。此外,缺乏对这些分析工具的系统描述使得难以选择更适合所研究的胶体组装体特征的工具。在这篇综述中,我们通过解释其原理及其在具有不同形貌特征的二维胶体组装体研究中的应用,对实空间图像分析工具进行了系统且广泛的描述。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验