Suppr超能文献

TM4SF4 和 LRRK2 通过异常值分析成为肺癌和乳腺癌的潜在治疗靶点。

TM4SF4 and LRRK2 Are Potential Therapeutic Targets in Lung and Breast Cancers through Outlier Analysis.

机构信息

Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.

Laboratory of Cancer Genomics and Molecular Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.

出版信息

Cancer Res Treat. 2021 Jan;53(1):9-24. doi: 10.4143/crt.2020.434. Epub 2020 Sep 16.

Abstract

PURPOSE

To find biomarkers for disease, there have been constant attempts to investigate the genes that differ from those in the disease groups. However, the values that lie outside the overall pattern of a distribution, the outliers, are frequently excluded in traditional analytical methods as they are considered to be 'some sort of problem.' Such outliers may have a biologic role in the disease group. Thus, this study explored new biomarker using outlier analysis, and verified the suitability of therapeutic potential of two genes (TM4SF4 and LRRK2).

MATERIALS AND METHODS

Modified Tukey's fences outlier analysis was carried out to identify new biomarkers using the public gene expression datasets. And we verified the presence of the selected biomarkers in other clinical samples via customized gene expression panels and tissue microarrays. Moreover, a siRNA-based knockdown test was performed to evaluate the impact of the biomarkers on oncogenic phenotypes.

RESULTS

TM4SF4 in lung cancer and LRRK2 in breast cancer were chosen as candidates among the genes derived from the analysis. TM4SF4 and LRRK2 were overexpressed in the small number of samples with lung cancer (4.20%) and breast cancer (2.42%), respectively. Knockdown of TM4SF4 and LRRK2 suppressed the growth of lung and breast cancer cell lines. The LRRK2 overexpressing cell lines were more sensitive to LRRK2-IN-1 than the LRRK2 under-expressing cell lines.

CONCLUSION

Our modified outlier-based analysis method has proved to rescue biomarkers previously missed or unnoticed by traditional analysis showing TM4SF4 and LRRK2 are novel target candidates for lung and breast cancer, respectively.

摘要

目的

为了寻找疾病的生物标志物,人们一直在尝试研究与疾病组不同的基因。然而,在传统分析方法中,经常会排除那些偏离总体分布模式的值,即异常值,因为它们被认为是“某种问题”。这些异常值在疾病组中可能具有生物学作用。因此,本研究利用异常值分析探索了新的生物标志物,并验证了两个基因(TM4SF4 和 LRRK2)治疗潜力的适用性。

材料和方法

使用公共基因表达数据集,通过修改的 Tukey 围栏异常值分析来识别新的生物标志物。我们通过定制的基因表达面板和组织微阵列验证了所选生物标志物在其他临床样本中的存在。此外,还进行了 siRNA 基敲低试验,以评估生物标志物对致癌表型的影响。

结果

在源自分析的基因中,TM4SF4 在肺癌中,LRRK2 在乳腺癌中被选为候选基因。TM4SF4 和 LRRK2 在肺癌(4.20%)和乳腺癌(2.42%)的少数样本中过表达。TM4SF4 和 LRRK2 的敲低抑制了肺癌和乳腺癌细胞系的生长。LRRK2 过表达细胞系对 LRRK2-IN-1 的敏感性高于 LRRK2 低表达细胞系。

结论

我们修改后的基于异常值的分析方法已证明可以挽救传统分析中遗漏或未注意到的生物标志物,表明 TM4SF4 和 LRRK2 分别是肺癌和乳腺癌的新靶标候选物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06de/7812009/6ce8a4deb47b/crt-2020-434f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验