Suppr超能文献

网络哈密顿模型揭示了淀粉样纤维形成的途径。

Network Hamiltonian models reveal pathways to amyloid fibril formation.

机构信息

Department of Computer Science, University of California, Irvine, CA, 92697, USA.

Department of Chemistry, San José State University, San Jose, CA, 95192, USA.

出版信息

Sci Rep. 2020 Sep 24;10(1):15668. doi: 10.1038/s41598-020-72260-8.

Abstract

Amyloid fibril formation is central to the etiology of a wide range of serious human diseases, such as Alzheimer's disease and prion diseases. Despite an ever growing collection of amyloid fibril structures found in the Protein Data Bank (PDB) and numerous clinical trials, therapeutic strategies remain elusive. One contributing factor to the lack of progress on this challenging problem is incomplete understanding of the mechanisms by which these locally ordered protein aggregates self-assemble in solution. Many current models of amyloid deposition diseases posit that the most toxic species are oligomers that form either along the pathway to forming fibrils or in competition with their formation, making it even more critical to understand the kinetics of fibrillization. A recently introduced topological model for aggregation based on network Hamiltonians is capable of recapitulating the entire process of amyloid fibril formation, beginning with thousands of free monomers and ending with kinetically accessible and thermodynamically stable amyloid fibril structures. The model can be parameterized to match the five topological classes encompassing all amyloid fibril structures so far discovered in the PDB. This paper introduces a set of network statistical and topological metrics for quantitative analysis and characterization of the fibrillization mechanisms predicted by the network Hamiltonian model. The results not only provide insight into different mechanisms leading to similar fibril structures, but also offer targets for future experimental exploration into the mechanisms by which fibrils form.

摘要

淀粉样纤维的形成是广泛存在的严重人类疾病(如阿尔茨海默病和朊病毒病)的发病机制的核心。尽管在蛋白质数据库(PDB)中发现了越来越多的淀粉样纤维结构,并且进行了大量的临床试验,但治疗策略仍然难以捉摸。造成这一具有挑战性的问题缺乏进展的一个因素是,人们对这些局部有序的蛋白质聚集体在溶液中自组装的机制了解不完整。许多目前的淀粉样沉积疾病模型假设,最具毒性的物种是寡聚物,这些寡聚物要么沿着形成纤维的途径形成,要么与纤维的形成竞争,因此,了解纤维形成的动力学就显得更加关键。最近提出的基于网络哈密顿量的聚集拓扑模型能够重现淀粉样纤维形成的整个过程,从数千个游离单体开始,最终形成动力学可及且热力学稳定的淀粉样纤维结构。该模型可以参数化以匹配迄今为止在 PDB 中发现的所有淀粉样纤维结构的五个拓扑类别。本文介绍了一组网络统计和拓扑指标,用于对网络哈密顿模型预测的纤维形成机制进行定量分析和特征描述。这些结果不仅提供了对导致类似纤维结构的不同机制的深入了解,还为未来对纤维形成机制的实验探索提供了目标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1140/7515878/c14ae79145d7/41598_2020_72260_Fig1_HTML.jpg

相似文献

1
Network Hamiltonian models reveal pathways to amyloid fibril formation.
Sci Rep. 2020 Sep 24;10(1):15668. doi: 10.1038/s41598-020-72260-8.
2
Network-Based Classification and Modeling of Amyloid Fibrils.
J Phys Chem B. 2019 Jul 5;123(26):5452-5462. doi: 10.1021/acs.jpcb.9b03494. Epub 2019 May 29.
3
Genetic Algorithm for Automated Parameterization of Network Hamiltonian Models of Amyloid Fibril Formation.
J Phys Chem B. 2024 Feb 29;128(8):1854-1865. doi: 10.1021/acs.jpcb.3c07322. Epub 2024 Feb 15.
5
Self-folding and aggregation of amyloid nanofibrils.
Nanoscale. 2011 Apr;3(4):1748-55. doi: 10.1039/c0nr00840k. Epub 2011 Feb 23.
6
Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
Acc Chem Res. 2014 Feb 18;47(2):603-11. doi: 10.1021/ar4002075. Epub 2013 Dec 24.
7
Molecular structures of amyloid and prion fibrils: consensus versus controversy.
Acc Chem Res. 2013 Jul 16;46(7):1487-96. doi: 10.1021/ar300282r. Epub 2013 Jan 7.
8
Kinetics of protein fibril formation: Methods and mechanisms.
Int J Biol Macromol. 2017 Jul;100:3-10. doi: 10.1016/j.ijbiomac.2016.06.052. Epub 2016 Jun 17.
9
Amyloid fibril formation by the chain B subunit of monellin occurs by a nucleation-dependent polymerization mechanism.
Biochemistry. 2014 Feb 25;53(7):1206-17. doi: 10.1021/bi401467p. Epub 2014 Feb 13.

引用本文的文献

1
Graph-Property Relationships for Complex Chiral Nanodendrimers.
ACS Nano. 2025 Feb 18;19(6):6095-6106. doi: 10.1021/acsnano.4c12964. Epub 2025 Feb 4.
2
Production of Distinct Fibrillar, Oligomeric, and Other Aggregation States from Network Models of Multibody Interaction.
J Chem Theory Comput. 2024 Sep 11;20(18):7829-40. doi: 10.1021/acs.jctc.4c00916.
3
Continuous Time Graph Processes with Known ERGM Equilibria: Contextual Review, Extensions, and Synthesis.
J Math Sociol. 2024;48(2):129-171. doi: 10.1080/0022250x.2023.2180001. Epub 2023 Feb 27.
4
Genetic Algorithm for Automated Parameterization of Network Hamiltonian Models of Amyloid Fibril Formation.
J Phys Chem B. 2024 Feb 29;128(8):1854-1865. doi: 10.1021/acs.jpcb.3c07322. Epub 2024 Feb 15.
5
Network Hamiltonian Models for Unstructured Protein Aggregates, with Application to γD-Crystallin.
J Phys Chem B. 2023 Jan 26;127(3):685-697. doi: 10.1021/acs.jpcb.2c07672. Epub 2023 Jan 13.
6
Highly scalable maximum likelihood and conjugate Bayesian inference for ERGMs on graph sets with equivalent vertices.
PLoS One. 2022 Aug 26;17(8):e0273039. doi: 10.1371/journal.pone.0273039. eCollection 2022.
7
Neural Upscaling from Residue-Level Protein Structure Networks to Atomistic Structures.
Biomolecules. 2021 Nov 30;11(12):1788. doi: 10.3390/biom11121788.
8
Chemical Properties Determine Solubility and Stability in βγ-Crystallins of the Eye Lens.
Chembiochem. 2021 Apr 16;22(8):1329-1346. doi: 10.1002/cbic.202000739. Epub 2021 Feb 10.
9
α-Crystallins in the Vertebrate Eye Lens: Complex Oligomers and Molecular Chaperones.
Annu Rev Phys Chem. 2021 Apr 20;72:143-163. doi: 10.1146/annurev-physchem-090419-121428. Epub 2020 Dec 15.

本文引用的文献

1
Network-Based Classification and Modeling of Amyloid Fibrils.
J Phys Chem B. 2019 Jul 5;123(26):5452-5462. doi: 10.1021/acs.jpcb.9b03494. Epub 2019 May 29.
2
Simulation Studies of Amyloidogenic Polypeptides and Their Aggregates.
Chem Rev. 2019 Jun 26;119(12):6956-6993. doi: 10.1021/acs.chemrev.8b00731. Epub 2019 Apr 11.
3
Cu/Zn-superoxide dismutase forms fibrillar hydrogels in a pH-dependent manner via a water-rich extended intermediate state.
PLoS One. 2018 Oct 5;13(10):e0205090. doi: 10.1371/journal.pone.0205090. eCollection 2018.
4
A new era for understanding amyloid structures and disease.
Nat Rev Mol Cell Biol. 2018 Dec;19(12):755-773. doi: 10.1038/s41580-018-0060-8.
5
Origin of metastable oligomers and their effects on amyloid fibril self-assembly.
Chem Sci. 2018 Jun 13;9(27):5937-5948. doi: 10.1039/c8sc01479e. eCollection 2018 Jul 21.
6
Amyloid assembly and disassembly.
J Cell Sci. 2018 Apr 13;131(8):jcs189928. doi: 10.1242/jcs.189928.
7
Chemical Kinetics for Bridging Molecular Mechanisms and Macroscopic Measurements of Amyloid Fibril Formation.
Annu Rev Phys Chem. 2018 Apr 20;69:273-298. doi: 10.1146/annurev-physchem-050317-021322. Epub 2018 Feb 28.
8
Scaling behaviour and rate-determining steps in filamentous self-assembly.
Chem Sci. 2017 Oct 1;8(10):7087-7097. doi: 10.1039/c7sc01965c. Epub 2017 Aug 31.
9
Protein Misfolding, Amyloid Formation, and Human Disease: A Summary of Progress Over the Last Decade.
Annu Rev Biochem. 2017 Jun 20;86:27-68. doi: 10.1146/annurev-biochem-061516-045115. Epub 2017 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验