Suppr超能文献

遗传算法在淀粉样纤维形成的网络哈密顿模型自动参数化中的应用。

Genetic Algorithm for Automated Parameterization of Network Hamiltonian Models of Amyloid Fibril Formation.

机构信息

Department of Chemistry, San José State University, San Jose, California 95192, United States.

出版信息

J Phys Chem B. 2024 Feb 29;128(8):1854-1865. doi: 10.1021/acs.jpcb.3c07322. Epub 2024 Feb 15.

Abstract

The time scales of long-time atomistic molecular dynamics simulations are typically reported in microseconds, while the time scales for experiments studying the kinetics of amyloid fibril formation are typically reported in minutes or hours. This time scale deficit of roughly 9 orders of magnitude presents a major challenge in the design of computer simulation methods for studying protein aggregation events. Coarse-grained molecular simulations offer a computationally tractable path forward for exploring the molecular mechanism driving the formation of these structures, which are implicated in diseases such as Alzheimer's, Parkinson's, and type-II diabetes. Network Hamiltonian models of aggregation are centered around a Hamiltonian function that returns the total energy of a system of aggregating proteins, given the graph structure of the system as an input. In the graph, or network, representation of the system, each protein molecule is represented as a node, and noncovalent bonds between proteins are represented as edges. The parameter, i.e., a set of coefficients that determine the degree to which each topological degree of freedom is favored or disfavored, must be determined for each network Hamiltonian model, and is a well-known technical challenge. The methodology is first demonstrated by beginning with an initial set of randomly parametrized models of low fibril fraction (<5% fibrillar), and evolving to subsequent generations of models, ultimately leading to high fibril fraction models (>70% fibrillar). The methodology is also demonstrated by applying it to optimizing previously published network Hamiltonian models for the 5 key amyloid fibril topologies that have been reported in the Protein Data Bank (PDB). The models generated by the AI produced fibril fractions that surpass previously published fibril fractions in 3 of 5 cases, including the most naturally abundant amyloid fibril topology, the , which features a steric zipper. The authors also aim to encourage more widespread use of the network Hamiltonian methodology for fitting a wide variety of self-assembling systems by releasing a free open-source implementation of the genetic algorithm introduced here.

摘要

长时原子分子动力学模拟的时间尺度通常以微秒为单位报告,而研究淀粉样纤维形成动力学的实验时间尺度通常以分钟或小时为单位报告。这种大约 9 个数量级的时间尺度差距是设计用于研究蛋白质聚集事件的计算机模拟方法的主要挑战。粗粒分子模拟为探索驱动这些结构形成的分子机制提供了一条计算上可行的途径,这些结构与阿尔茨海默病、帕金森病和 2 型糖尿病等疾病有关。聚集的网络哈密顿模型的核心是一个哈密顿函数,该函数返回聚合蛋白系统的总能量,输入为系统的图结构。在系统的图或网络表示中,每个蛋白质分子表示为一个节点,蛋白质之间的非共价键表示为边。参数,即一组确定每个拓扑自由度被偏好或不被偏好的程度的系数,必须为每个网络哈密顿模型确定,这是一个众所周知的技术挑战。该方法首先通过从低纤维分数(<5%纤维状)的初始随机参数化模型集开始,并演化为后续几代模型,最终导致高纤维分数模型(>70%纤维状)来演示。该方法还通过将其应用于优化先前发表的网络哈密顿模型来演示,这些模型针对已在蛋白质数据库(PDB)中报告的 5 种关键淀粉样纤维拓扑结构进行了优化。人工智能生成的模型产生的纤维分数在 5 种情况中的 3 种超过了先前发表的纤维分数,包括最自然丰富的淀粉样纤维拓扑结构,即特征为空间拉链的 。作者还旨在通过发布此处介绍的遗传算法的免费开源实现,鼓励更广泛地使用网络哈密顿方法来拟合各种自组装系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7416/10910512/3c41b754b8bd/jp3c07322_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验