Suppr超能文献

心肌肥厚细胞培养、组织工程模型及涉及非编码RNA的新途径的新见解与当前方法

New Insights and Current Approaches in Cardiac Hypertrophy Cell Culture, Tissue Engineering Models, and Novel Pathways Involving Non-Coding RNA.

作者信息

Kastner Nina, Zlabinger Katrin, Spannbauer Andreas, Traxler Denise, Mester-Tonczar Julia, Hašimbegović Ena, Gyöngyösi Mariann

机构信息

Department of Cardiology, Medical University of Vienna, Vienna, Austria.

出版信息

Front Pharmacol. 2020 Aug 21;11:1314. doi: 10.3389/fphar.2020.01314. eCollection 2020.

Abstract

Cardiac hypertrophy is an ongoing clinical challenge, as risk factors such as obesity, smoking and increasing age become more widespread, which lead to an increasing prevalence of developing hypertrophy. Pathological hypertrophy is a maladaptive response to stress conditions, such as pressure overload, and involve a number of changes in cellular mechanisms, gene expression and pathway regulations. Although several important pathways involved in the remodeling and hypertrophy process have been identified, further research is needed to achieve a better understanding and explore new and better treatment options. More recently discovered pathways showed the involvement of several non-coding RNAs, including micro RNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), which either promote or inhibit the remodeling process and pose a possible target for novel therapy approaches. modeling serves as a vital tool for this further pathway analysis and treatment testing and has vastly improved over the recent years, providing a less costly and labor-intensive alternative to animal models.

摘要

心脏肥大是一个持续存在的临床挑战,随着肥胖、吸烟和年龄增长等危险因素日益普遍,导致心脏肥大的患病率不断上升。病理性肥大是对压力过载等应激条件的一种适应性不良反应,涉及细胞机制、基因表达和信号通路调控等多个方面的变化。尽管已经确定了一些参与重塑和肥大过程的重要信号通路,但仍需要进一步研究以更好地理解并探索新的、更好的治疗方案。最近发现的信号通路显示,包括微小RNA(miRNA)、长链非编码RNA(lncRNA)和环状RNA(circRNA)在内的几种非编码RNA参与其中,它们要么促进要么抑制重塑过程,为新型治疗方法提供了可能的靶点。建模是进一步进行信号通路分析和治疗测试的重要工具,并且近年来有了很大改进,为动物模型提供了一种成本更低、劳动强度更小的替代方案。

相似文献

2
Long non-coding RNAs in cardiac hypertrophy.
Heart Fail Rev. 2020 Nov;25(6):1037-1045. doi: 10.1007/s10741-019-09882-2.
3
Non-coding RNAs in Physiological Cardiac Hypertrophy.
Adv Exp Med Biol. 2020;1229:149-161. doi: 10.1007/978-981-15-1671-9_8.
4
Identification of Novel Long Non-coding and Circular RNAs in Human Papillomavirus-Mediated Cervical Cancer.
Front Microbiol. 2017 Sep 19;8:1720. doi: 10.3389/fmicb.2017.01720. eCollection 2017.
5
Exploration of Long Non-coding RNAs and Circular RNAs in Porcine Milk Exosomes.
Front Genet. 2020 Jul 2;11:652. doi: 10.3389/fgene.2020.00652. eCollection 2020.
6
Noncoding RNAs in Cardiac Hypertrophy.
J Cardiovasc Transl Res. 2018 Dec;11(6):439-449. doi: 10.1007/s12265-018-9797-x. Epub 2018 Aug 31.
7
Long Non-Coding RNAs in Cardiac Hypertrophy.
Front Mol Med. 2022 Mar 8;2:836418. doi: 10.3389/fmmed.2022.836418. eCollection 2022.
8
A transcriptomic profile of topping responsive non-coding RNAs in tobacco roots (Nicotiana tabacum).
BMC Genomics. 2019 Nov 14;20(1):856. doi: 10.1186/s12864-019-6236-6.
9
Non-coding RNA-linked epigenetic regulation in cardiac hypertrophy.
Int J Biol Sci. 2018 Jun 22;14(9):1133-1141. doi: 10.7150/ijbs.26215. eCollection 2018.

引用本文的文献

1
The Current State of Realistic Heart Models for Disease Modelling and Cardiotoxicity.
Int J Mol Sci. 2024 Aug 24;25(17):9186. doi: 10.3390/ijms25179186.
2
Isoproterenol induced cardiac hypertrophy: A comparison of three doses and two delivery methods in C57BL/6J mice.
PLoS One. 2024 Jul 22;19(7):e0307467. doi: 10.1371/journal.pone.0307467. eCollection 2024.
3
Peroxiredoxin-5 Knockdown Accelerates Pressure Overload-Induced Cardiac Hypertrophy in Mice.
Oxid Med Cell Longev. 2022 Jan 29;2022:5067544. doi: 10.1155/2022/5067544. eCollection 2022.
4

本文引用的文献

1
Noncoding RNAs in Vascular Diseases.
Circ Res. 2020 Apr 24;126(9):1127-1145. doi: 10.1161/CIRCRESAHA.119.315938. Epub 2020 Apr 23.
2
3
PKD deletion promotes autophagy and inhibits hypertrophy in cardiomyocyte.
Exp Cell Res. 2020 Jan 15;386(2):111742. doi: 10.1016/j.yexcr.2019.111742. Epub 2019 Nov 21.
5
MicroRNAs in Cardiac Hypertrophy.
Int J Mol Sci. 2019 Sep 23;20(19):4714. doi: 10.3390/ijms20194714.
6
Large Animal Models of Heart Failure With Reduced Ejection Fraction (HFrEF).
Front Cardiovasc Med. 2019 Aug 14;6:117. doi: 10.3389/fcvm.2019.00117. eCollection 2019.
7
3D Cardiac Cell Culture: A Critical Review of Current Technologies and Applications.
Front Cardiovasc Med. 2019 Jun 26;6:87. doi: 10.3389/fcvm.2019.00087. eCollection 2019.
8
The emerging roles and functions of circular RNAs and their generation.
J Biomed Sci. 2019 Apr 25;26(1):29. doi: 10.1186/s12929-019-0523-z.
9
A high-throughput ratiometric method for imaging hypertrophic growth in cultured primary cardiac myocytes.
J Mol Cell Cardiol. 2019 May;130:184-196. doi: 10.1016/j.yjmcc.2019.04.001. Epub 2019 Apr 13.
10
Human Cardiac Organoids for Disease Modeling.
Clin Pharmacol Ther. 2019 Jan;105(1):79-85. doi: 10.1002/cpt.1286. Epub 2018 Dec 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验