Suppr超能文献

从环境到临床:农药在抗菌素耐药性中的作用

From environment to clinic: the role of pesticides in antimicrobial resistance.

作者信息

Malagón-Rojas Jeadran N, Parra Barrera Eliana L, Lagos Luisa

机构信息

Facultad de Medicina, Universidad El Bosque Bogotá Colombia Facultad de Medicina, Universidad El Bosque, Bogotá, Colombia.

Grupo Salud Ambiental y Laboral, Instituto Nacional de Salud Bogotá Colombia Grupo Salud Ambiental y Laboral, Instituto Nacional de Salud, Bogotá, Colombia.

出版信息

Rev Panam Salud Publica. 2020 Sep 23;44:e44. doi: 10.26633/RPSP.2020.44. eCollection 2020.

Abstract

Antimicrobial resistance (AMR) in pathogens has been associated mainly with excessive use of antibiotics. Most studies of resistance have focused on clinical pathogens; however, microorganisms are exposed to numerous anthropogenic substances. Few studies have sought to determine the effects of chemical substances on microorganisms. Exposure to these substances may contribute to increased rates of AMR. Understanding microorganism communities in natural environments and AMR mechanisms under the effects of anthropogenic substances, such as pesticides, is important to addressing the current crisis of antimicrobial resistance. This report draws attention to molecules, rather than antibiotics, that are commonly used in agrochemicals and may be involved in developing AMR in non-clinical environments, such as soil. This report examines pesticides as mediators for the appearance of AMR, and as a route for antibiotic resistance genes and antimicrobial resistant bacteria to the anthropic environment. Available evidence suggests that the natural environment may be a key dissemination route for antibiotic-resistant genes. Understanding the interrelationship of soil, water, and pesticides is fundamental to raising awareness of the need for environmental monitoring programs and overcoming the current crisis of AMR.

摘要

病原体中的抗菌药物耐药性(AMR)主要与抗生素的过度使用有关。大多数耐药性研究都集中在临床病原体上;然而,微生物会接触到众多人为物质。很少有研究试图确定化学物质对微生物的影响。接触这些物质可能会导致AMR发生率上升。了解自然环境中的微生物群落以及农药等人为物质影响下的AMR机制,对于应对当前的抗菌药物耐药性危机至关重要。本报告关注的是农业化学品中常用的、可能在非临床环境(如土壤)中参与AMR发展的分子,而非抗生素。本报告将农药视为AMR出现的介质,以及抗生素耐药基因和抗菌药物耐药菌进入人类环境的一条途径。现有证据表明,自然环境可能是抗生素耐药基因的关键传播途径。了解土壤、水和农药之间的相互关系,对于提高对环境监测计划必要性的认识以及克服当前的AMR危机至关重要。

相似文献

1
From environment to clinic: the role of pesticides in antimicrobial resistance.
Rev Panam Salud Publica. 2020 Sep 23;44:e44. doi: 10.26633/RPSP.2020.44. eCollection 2020.
5
7
Differential Drivers of Antimicrobial Resistance across the World.
Acc Chem Res. 2019 Apr 16;52(4):916-924. doi: 10.1021/acs.accounts.8b00643. Epub 2019 Mar 8.
8
Review of Antibiotic Resistance, Ecology, Dissemination, and Mitigation in U.S. Broiler Poultry Systems.
Front Microbiol. 2019 Nov 15;10:2639. doi: 10.3389/fmicb.2019.02639. eCollection 2019.
9
Antimicrobial resistance in urban river ecosystems.
Microbiol Res. 2022 Oct;263:127135. doi: 10.1016/j.micres.2022.127135. Epub 2022 Jul 16.
10
Identification of antimicrobial resistance genes and drug resistance analysis of Escherichia coli in the animal farm environment.
J Infect Public Health. 2021 Dec;14(12):1788-1795. doi: 10.1016/j.jiph.2021.10.025. Epub 2021 Nov 1.

引用本文的文献

4
Modeling spatial evolution of multi-drug resistance under drug environmental gradients.
PLoS Comput Biol. 2024 May 31;20(5):e1012098. doi: 10.1371/journal.pcbi.1012098. eCollection 2024 May.
5
Modeling spatial evolution of multi-drug resistance under drug environmental gradients.
bioRxiv. 2023 Nov 17:2023.11.16.567447. doi: 10.1101/2023.11.16.567447.
9
Metagenomic-based surveillance systems for antibiotic resistance in non-clinical settings.
Front Microbiol. 2022 Dec 2;13:1066995. doi: 10.3389/fmicb.2022.1066995. eCollection 2022.

本文引用的文献

1
Antimicrobial resistance - moving forward?
BMC Public Health. 2019 Jul 2;19(1):858. doi: 10.1186/s12889-019-7173-7.
2
Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes.
Environ Int. 2019 Sep;130:104912. doi: 10.1016/j.envint.2019.104912. Epub 2019 Jun 17.
3
Microbial Diversity and Antimicrobial Resistance Profile in Microbiota From Soils of Conventional and Organic Farming Systems.
Front Microbiol. 2019 Apr 26;10:892. doi: 10.3389/fmicb.2019.00892. eCollection 2019.
4
Antibiotic resistance in drinking water systems: Occurrence, removal, and human health risks.
Sci Total Environ. 2019 Jun 15;669:785-797. doi: 10.1016/j.scitotenv.2019.03.162. Epub 2019 Mar 12.
5
6
Change in the antimicrobial resistance profile of Pseudomonas aeruginosa from soil after exposure to herbicides.
J Environ Sci Health B. 2019;54(4):290-293. doi: 10.1080/03601234.2018.1561056. Epub 2019 Jan 11.
7
Comparison of Bacterial Diversity in Air and Water of a Major Urban Center.
Front Microbiol. 2018 Nov 29;9:2868. doi: 10.3389/fmicb.2018.02868. eCollection 2018.
8
Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance?
Sci Total Environ. 2019 Mar 1;654:177-189. doi: 10.1016/j.scitotenv.2018.11.041. Epub 2018 Nov 6.
9
Agrichemicals and antibiotics in combination increase antibiotic resistance evolution.
PeerJ. 2018 Oct 12;6:e5801. doi: 10.7717/peerj.5801. eCollection 2018.
10
Environmental and health effects of the herbicide glyphosate.
Sci Total Environ. 2018 Mar;616-617:255-268. doi: 10.1016/j.scitotenv.2017.10.309. Epub 2017 Nov 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验