Suppr超能文献

建立药物环境梯度下多药耐药性的空间演变模型。

Modeling spatial evolution of multi-drug resistance under drug environmental gradients.

机构信息

Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal.

Departments of Biophysics and Physics, University of Michigan, United States of America.

出版信息

PLoS Comput Biol. 2024 May 31;20(5):e1012098. doi: 10.1371/journal.pcbi.1012098. eCollection 2024 May.

Abstract

Multi-drug combinations to treat bacterial populations are at the forefront of approaches for infection control and prevention of antibiotic resistance. Although the evolution of antibiotic resistance has been theoretically studied with mathematical population dynamics models, extensions to spatial dynamics remain rare in the literature, including in particular spatial evolution of multi-drug resistance. In this study, we propose a reaction-diffusion system that describes the multi-drug evolution of bacteria based on a drug-concentration rescaling approach. We show how the resistance to drugs in space, and the consequent adaptation of growth rate, is governed by a Price equation with diffusion, integrating features of drug interactions and collateral resistances or sensitivities to the drugs. We study spatial versions of the model where the distribution of drugs is homogeneous across space, and where the drugs vary environmentally in a piecewise-constant, linear and nonlinear manner. Although in many evolution models, per capita growth rate is a natural surrogate for fitness, in spatially-extended, potentially heterogeneous habitats, fitness is an emergent property that potentially reflects additional complexities, from boundary conditions to the specific spatial variation of growth rates. Applying concepts from perturbation theory and reaction-diffusion equations, we propose an analytical metric for characterization of average mutant fitness in the spatial system based on the principal eigenvalue of our linear problem, λ1. This enables an accurate translation from drug spatial gradients and mutant antibiotic susceptibility traits to the relative advantage of each mutant across the environment. Our approach allows one to predict the precise outcomes of selection among mutants over space, ultimately from comparing their λ1 values, which encode a critical interplay between growth functions, movement traits, habitat size and boundary conditions. Such mathematical understanding opens new avenues for multi-drug therapeutic optimization.

摘要

多药物组合治疗细菌群体是控制感染和预防抗生素耐药性的最前沿方法。尽管抗生素耐药性的进化已经在理论上通过数学种群动力学模型进行了研究,但在文献中,包括多药耐药性的空间进化,扩展到空间动力学仍然很少。在这项研究中,我们提出了一个基于药物浓度重缩放方法的反应扩散系统,用于描述细菌的多药物进化。我们展示了空间中药物的耐药性,以及由此产生的生长率的适应性,是如何由带有扩散的 Price 方程来控制的,该方程整合了药物相互作用和药物的旁系耐药性或敏感性的特征。我们研究了模型的空间版本,其中药物在空间中的分布是均匀的,并且药物以分段常数、线性和非线性方式在环境中变化。尽管在许多进化模型中,人均增长率是适合度的自然替代物,但在空间扩展的、潜在异质的栖息地中,适合度是一个涌现的特性,可能反映了额外的复杂性,从边界条件到生长率的特定空间变化。应用微扰理论和反应扩散方程的概念,我们提出了一种基于我们线性问题的主特征值 λ1 的分析方法,用于空间系统中平均突变体适合度的特征化。这使得能够根据药物空间梯度和突变体抗生素敏感性特征,准确地将每个突变体在环境中的相对优势进行转化。我们的方法可以预测突变体在空间中选择的精确结果,最终可以通过比较它们的 λ1 值来实现,这反映了生长函数、运动特征、栖息地大小和边界条件之间的关键相互作用。这种数学理解为多药物治疗优化开辟了新的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8a91/11142541/a1461b9e347a/pcbi.1012098.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验