State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, Shandong, China.
School of Life Sciences, Shandong University, Qingdao, Shandong, China.
Appl Environ Microbiol. 2021 Feb 26;87(6). doi: 10.1128/AEM.02659-20.
Antimicrobial-resistant pathogens display significant public health threats by causing difficulties in clinical treatment of bacterial infection. Antimicrobial resistance (AMR) is transmissible between bacteria, significantly increasing the appearance of antimicrobial-resistant pathogens and aggravating the AMR problem. In this work, the dissemination dynamics of AMR from invading multidrug-resistant (MDR) to a community of pathogenic was investigated using a continuous-culture device, and the behaviors of dissemination dynamics under different levels of antibiotic stress were investigated. Three MDR invasion events were analyzed in this work: MDR - cocolonization, MDR invasion after antibiotic treatment of , and MDR invasion before antibiotic treatment of It was found that both horizontal gene transfer (HGT) and vertical gene transfer (VGT) play significant roles in AMR dissemination, although different processes contribute differently under different circumstances, that environmental levels of antibiotics promote AMR dissemination by enhancing HGT rather than leading to selective advantage for resistant bacteria, and that early invasion of MDR completely and quickly sabotages the effectiveness of antibiotic treatment. These findings contribute to understanding the drivers of AMR dissemination under different antibiotic stresses, the detrimental impact of environmental tetracycline contamination, and the danger of nosocomial presence and dissemination of MDR nonpathogens. Antimicrobial resistance poses a grave threat to public health and reduces the effectiveness of antimicrobial drugs in treating bacterial infections. Antimicrobial resistance is transmissible, either by horizontal gene transfer between bacteria or by vertical gene transfer following inheritance of genetic traits. The dissemination dynamics and behaviors of this threat, however, have not been rigorously investigated. In this work, with a continuous-culture device, we studied antimicrobial resistance dissemination processes by simulating antimicrobial-resistant invasion to a pathogenic community. Using this novel tool, we provide evidence on the drivers of antimicrobial resistance dissemination, on the detrimental impact of environmental antibiotic contamination, and on the danger of antimicrobial resistance in hospitals, even if what harbors the antimicrobial resistance is not a pathogen. This work furthers our understanding of antimicrobial resistance and its dissemination between bacteria and of antibiotic therapy, our most powerful tool against bacterial infection.
抗微生物药物耐药性病原体通过导致细菌感染的临床治疗困难,对公共卫生造成重大威胁。抗微生物药物耐药性(AMR)在细菌之间具有传染性,这显著增加了抗微生物药物耐药性病原体的出现,并使 AMR 问题恶化。在这项工作中,使用连续培养装置研究了抗微生物药物耐药性从入侵的多药耐药(MDR)到病原社区的传播动力学,并研究了在不同抗生素应激水平下传播动力学的行为。在这项工作中分析了三种 MDR 入侵事件:MDR 共定植、抗生素治疗后 MDR 入侵和抗生素治疗前 MDR 入侵。结果发现,水平基因转移(HGT)和垂直基因转移(VGT)都对抗微生物药物耐药性的传播起着重要作用,尽管在不同情况下,不同的过程有不同的贡献,环境水平的抗生素通过增强 HGT 而不是导致耐药细菌的选择优势来促进抗微生物药物耐药性的传播,并且 MDR 的早期入侵完全且快速地破坏了抗生素治疗的有效性。这些发现有助于理解不同抗生素应激下抗微生物药物耐药性传播的驱动因素、环境四环素污染的有害影响以及医院存在和传播 MDR 非病原体的危险。抗微生物药物耐药性对公共健康构成严重威胁,并降低了抗菌药物治疗细菌感染的效果。抗微生物药物耐药性是可传播的,可以通过细菌之间的水平基因转移或遗传特征的垂直基因转移进行传播。然而,这种威胁的传播动力学和行为尚未得到严格研究。在这项工作中,我们使用连续培养装置通过模拟抗微生物药物耐药性病原体入侵病原社区来研究抗微生物药物耐药性传播过程。使用这种新工具,我们提供了关于抗微生物药物耐药性传播驱动力的证据,关于环境抗生素污染的有害影响的证据,以及关于医院抗微生物药物耐药性的危险的证据,即使抗微生物药物耐药性的载体不是病原体。这项工作增进了我们对抗微生物药物耐药性及其在细菌之间的传播以及对抗生素治疗的理解,抗生素治疗是我们对抗细菌感染最有力的工具。