Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India.
Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada.
Chem Res Toxicol. 2020 Oct 19;33(10):2573-2583. doi: 10.1021/acs.chemrestox.0c00183. Epub 2020 Oct 6.
Exposure to aristolochic acid I and II (AAI and AAII) has been implicated in aristolochic acid nephropathy and urothelial carcinoma. The toxicological effects of AAs are attributed to their ability to form aristolacatam (AL)-purine DNA adducts. Among these lesions, the AL-adenine (ALI-N-A and ALII-N-A) adducts cause the "signature" A → T transversion mutations associated with AA genotoxicity. To provide the currently missing structural basis for the induction of these signature mutations, the present work uses classical all-atom molecular dynamics simulations to examine different (i.e., preinsertion, insertion, and postextension) stages of replication past the most abundant AA adduct (ALI-N-A) by a representative lesion-bypass DNA polymerase (Dpo4). Our analysis reveals that, before dNTP incorporation (i.e., preinsertion step), ALI-N-A adopts a nearly planar conformation at the N-linkage and the ALI moiety intercalates within the DNA helix. Since this conformation occupies the dNTP binding site, the same planar lesion conformation results in a significant distortion of the polymerase active site at the insertion step and therefore replication will likely not be successful. However, if ALI-N-A undergoes a small conformational change to introduce non-planarity at the N-linkage during the insertion step, minimal distortion occurs in the Dpo4 active site upon incorporation of dATP. This insertion and subsequent extension would initially lead to A:A mismatches and then result in A → T transversion mutations during the second round of replication. In contrast, if a large conformation flip of the ALI moiety occurs at the insertion step to reorient the bulky moiety from an intercalated position into the major groove, dTTP (non-mutagenic) incorporation will be favored. Molecular dynamics (MD) simulations on postextension complexes reveal that damaged DNA will likely further rearrange during later replication steps to acquire a base-displaced intercalated conformation that is similar to that previously reported for (unbound) ALI-N-A adducted DNA, with the exception of slight non-planarity at the lesion site. Overall, our results provide a structural explanation for both the successful non-mutagenic lesion bypass and the preferential misincorporation of dATP opposite ALI-N-A and thereby rationalize the previously reported induction of A → T signature transversion mutations associated with AAs. This work should thereby inspire future biochemical experiments and modeling studies on the replication of this important class of DNA lesions by related human translesion synthesis polymerases.
接触马兜铃酸 I 和 II(AAI 和 AAII)与马兜铃酸肾病和尿路上皮癌有关。AA 的毒理作用归因于它们形成马兜铃内酰胺(AL)-嘌呤 DNA 加合物的能力。在这些损伤中,AL-腺嘌呤(ALI-N-A 和 ALII-N-A)加合物导致与 AA 遗传毒性相关的“特征”A→T 颠换突变。为了提供这些特征性突变诱导的当前缺失的结构基础,本工作使用经典的全原子分子动力学模拟研究了代表性的损伤旁路 DNA 聚合酶(Dpo4)复制过程中最丰富的 AA 加合物(ALI-N-A)的不同(即预插入、插入和后延伸)阶段。我们的分析表明,在 dNTP 掺入(即预插入步骤)之前,ALI-N-A 在 N 键合处采用近乎平面的构象,并且 ALI 部分嵌入 DNA 螺旋中。由于这种构象占据了 dNTP 结合位点,相同的平面损伤构象导致聚合酶活性位点在插入步骤中发生显著扭曲,因此复制可能不会成功。然而,如果 ALI-N-A 在插入步骤中发生小的构象变化,在 N 键合处引入非平面性,则在 dATP 掺入时 Dpo4 活性位点发生最小的扭曲。这种插入和随后的延伸最初会导致 A:A 错配,然后在第二轮复制中导致 A→T 颠换突变。相比之下,如果在插入步骤中 ALI 部分发生大的构象翻转,将大的部分从嵌入位置重新定向到大沟中,则有利于 dTTP(非诱变)掺入。后延伸复合物的分子动力学(MD)模拟表明,受损 DNA 在随后的复制步骤中可能会进一步重排,以获得类似于先前报道的(未结合)ALI-N-A 加合物 DNA 的碱基置换嵌入构象,除了损伤部位的轻微非平面性。总体而言,我们的结果为成功的非诱变损伤旁路以及 dATP 与 ALI-N-A 错配的优先掺入提供了结构解释,从而合理化了先前报道的与 AA 相关的 A→T 特征性颠换突变的诱导。这项工作应该会激发未来关于相关人类跨损伤合成聚合酶复制这一重要类别的 DNA 损伤的生化实验和建模研究。