Suppr超能文献

专用型柔性 MRI 接收线圈的快速发展。

Rapid development of application-specific flexible MRI receive coils.

机构信息

Department of Radiology, University of Wisconsin, Madison, WI 53705, United States of America. Author B D Collick and author B Behzadnezhad contributed equally to this work.

出版信息

Phys Med Biol. 2020 Sep 24;65(19):19NT01. doi: 10.1088/1361-6560/abaffb.

Abstract

Over the last 30 years, there have been dramatic changes in phased array coil technology leading to increasing channel density and parallel imaging functionality. Current receiver array coils are rigid and often mismatched to patient's size. Recently there has been a move towards flexible coil technology, which is more conformal to the human anatomy. Despite the advances of so-called flexible surface coil arrays, these coils are still relatively rigid and limited in terms of design conformability, compromising signal-to-noise ratio (SNR) for flexibility, and are not designed for optimum parallel imaging performance. The purpose of this study is to report on the development and characterization of a 15-channel flexible foot and ankle coil, rapidly designed and constructed using highly decoupled radio-frequency (RF) coil elements. Coil performance was evaluated by performing SNR and g-factor measurements. In vivo testing was performed in a healthy volunteer using both the 15-channel coil and a commercially available 8-channel foot coil. The highly decoupled elements used in this design allow for extremely rapid development and prototyping of application-specific coils for different patient sizes (adult vs child) with minimal additional design consideration in terms of coil overlap and geometry. Image quality was comparable to a commercially available RF coil.

摘要

在过去的 30 年中,相控阵线圈技术发生了巨大变化,导致通道密度和并行成像功能不断提高。目前的接收线圈是刚性的,通常与患者的体型不匹配。最近,人们开始转向更灵活的线圈技术,这种技术更符合人体解剖结构。尽管所谓的柔性表面线圈阵列有了进步,但这些线圈仍然相对较硬,在设计适应性方面受到限制,为了灵活性而牺牲了信噪比(SNR),并且不是为最佳并行成像性能而设计的。本研究的目的是报告一种 15 通道的柔性足踝线圈的开发和特性,该线圈使用高度解耦的射频(RF)线圈元件快速设计和构建。通过 SNR 和 g 因子测量来评估线圈性能。在健康志愿者中进行了体内测试,使用了 15 通道线圈和市售的 8 通道足线圈。该设计中使用的高度解耦元件允许针对不同患者体型(成人与儿童)极其快速地开发和原型制作特定应用的线圈,而在线圈重叠和几何形状方面几乎不需要额外的设计考虑。图像质量可与市售的 RF 线圈相媲美。

相似文献

1
Rapid development of application-specific flexible MRI receive coils.
Phys Med Biol. 2020 Sep 24;65(19):19NT01. doi: 10.1088/1361-6560/abaffb.
3
Flexible array coil for cervical and extraspinal (FACE) MRI at 3.0 Tesla.
Phys Med Biol. 2023 Oct 26;68(21). doi: 10.1088/1361-6560/ad0217.
4
Effects of proximity and noise level of phased array coil elements on overall signal-to-noise in parallel MR spectroscopy.
Magn Reson Imaging. 2018 Apr;47:125-130. doi: 10.1016/j.mri.2017.12.001. Epub 2017 Dec 5.
5
Comparison of four MR carotid surface coils at 3T.
PLoS One. 2019 Mar 4;14(3):e0213107. doi: 10.1371/journal.pone.0213107. eCollection 2019.
6
Inductively coupled wireless RF coil arrays.
Magn Reson Imaging. 2015 Apr;33(3):351-7. doi: 10.1016/j.mri.2014.12.004. Epub 2014 Dec 16.
7
A flexible 8.5 MHz litz wire receive array for field-cycling imaging.
Phys Med Biol. 2023 Feb 27;68(5). doi: 10.1088/1361-6560/acb9d0.
8
Evaluation of stacked resonators to enhance the performance of a surface receive-only array for prostate MRI at 3 Tesla.
Magn Reson Imaging. 2018 Nov;53:164-172. doi: 10.1016/j.mri.2018.07.010. Epub 2018 Jul 25.
9
Experimental verification of SNR and parallel imaging improvements using composite arrays.
NMR Biomed. 2015 Feb;28(2):141-53. doi: 10.1002/nbm.3230. Epub 2014 Nov 11.
10
A semiflexible 64-channel receive-only phased array for pediatric body MRI at 3T.
Magn Reson Med. 2016 Sep;76(3):1015-21. doi: 10.1002/mrm.25999. Epub 2015 Sep 29.

引用本文的文献

1
Flexible Array for Cervical and Extraspinal (FACE) MR Neurography of the Occipital Nerves at 3T.
AJNR Am J Neuroradiol. 2025 May 2;46(5):1056-1060. doi: 10.3174/ajnr.A8597.
2
Application of high-density 2D receiver coil arrays for improved SNR in prostate MRI.
Magn Reson Med. 2025 Feb;93(2):850-863. doi: 10.1002/mrm.30289. Epub 2024 Sep 25.
3
Reproducible and highly miniaturized bazooka RF Balun using a printed capacitor.
Magn Reson Med. 2025 Jan;93(1):422-432. doi: 10.1002/mrm.30268. Epub 2024 Aug 27.
5
Miniature and flexible Bazooka balun for high-field MRI.
J Magn Reson. 2023 Nov;356:107577. doi: 10.1016/j.jmr.2023.107577. Epub 2023 Oct 25.
6
Flexible multi-purpose integrated RF/shim coil array for MRI and localized B shimming.
Magn Reson Med. 2024 Feb;91(2):842-849. doi: 10.1002/mrm.29891. Epub 2023 Oct 17.
7
MRI Advancements in Musculoskeletal Clinical and Research Practice.
Radiology. 2023 Aug;308(2):e230531. doi: 10.1148/radiol.230531.
8
The future of MRI in radiation therapy: Challenges and opportunities for the MR community.
Magn Reson Med. 2022 Dec;88(6):2592-2608. doi: 10.1002/mrm.29450. Epub 2022 Sep 21.

本文引用的文献

1
A high-impedance detector-array glove for magnetic resonance imaging of the hand.
Nat Biomed Eng. 2018 Aug;2(8):570-577. doi: 10.1038/s41551-018-0233-y. Epub 2018 May 7.
2
Flexible 23-channel coil array for high-resolution magnetic resonance imaging at 3 Tesla.
PLoS One. 2018 Nov 1;13(11):e0206963. doi: 10.1371/journal.pone.0206963. eCollection 2018.
4
Dielectric properties of 3D-printed materials for anatomy specific 3D-printed MRI coils.
J Magn Reson. 2018 Apr;289:113-121. doi: 10.1016/j.jmr.2018.02.013. Epub 2018 Feb 21.
5
A target field design of open multi-purpose RF coil for musculoskeletal MR imaging at 3T.
Magn Reson Imaging. 2016 Oct;34(8):1064-70. doi: 10.1016/j.mri.2016.04.018. Epub 2016 Apr 22.
6
Screen-printed flexible MRI receive coils.
Nat Commun. 2016 Mar 10;7:10839. doi: 10.1038/ncomms10839.
7
Knee MRI under varying flexion angles utilizing a flexible flat cable antenna.
NMR Biomed. 2015 Apr;28(4):460-7. doi: 10.1002/nbm.3264. Epub 2015 Mar 4.
8
Advances in musculoskeletal MRI: technical considerations.
J Magn Reson Imaging. 2012 Oct;36(4):775-87. doi: 10.1002/jmri.23629.
9
Stretchable coil arrays: application to knee imaging under varying flexion angles.
Magn Reson Med. 2012 Mar;67(3):872-9. doi: 10.1002/mrm.23240. Epub 2011 Dec 28.
10
Radiofrequency coils for musculoskeletal magnetic resonance imaging.
Top Magn Reson Imaging. 2010 Oct;21(5):315-23. doi: 10.1097/RMR.0b013e31823cd184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验