Suppr超能文献

采用印刷电容实现可重现且高度微型化的巴祖卡 RF 平衡-不平衡转换器。

Reproducible and highly miniaturized bazooka RF Balun using a printed capacitor.

机构信息

Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.

出版信息

Magn Reson Med. 2025 Jan;93(1):422-432. doi: 10.1002/mrm.30268. Epub 2024 Aug 27.

Abstract

PURPOSE

There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design.

METHODS

We introduce a novel approach to producing Bazooka baluns with printed coaxial capacitors, enabling the achievement of significant capacitance per unit length. Rigorous electromagnetic simulations and thorough hardware fabrication validate the efficacy of the proposed design across various magnetic field strengths, including 1.5 T, 3 T, and 7 T MRI systems.

RESULTS

Bench testing reveals that the proposed balun can achieve an acceptable common-mode rejection ratio even when it is highly miniaturized. The use of printed capacitors allows for a notable reduction in balun length and ensures high reproducibility. Findings demonstrate that the proposed balun exhibits no RF field distortion even when placed close to the sample, making it suitable for flexible coils, wearable coils, and high-density coils, particularly in high-field MRI.

CONCLUSION

The reproducibility inherent in the manufacturing process of printed coaxial capacitors allows for simple fabrication and ensures consistency in production. These advancements pave the way for the development of flexible coils, wearable coils, and high-density coils.

摘要

目的

目前,开发高密度、轻量级和高柔性的射频线圈是一个强烈的趋势。除了射频线圈本身的谐振器结构外,平衡-不平衡变压器或电缆陷波器电路作为射频线圈功能和灵敏度的另一个重要元件。本研究探讨了在射频线圈设计中可重复、高度微型化的平衡-不平衡变压器的开发和应用。

方法

我们介绍了一种使用印刷同轴电容器制作 Bazooka 平衡-不平衡变压器的新方法,可实现单位长度的显著电容。通过严格的电磁仿真和全面的硬件制作,验证了该设计在包括 1.5T、3T 和 7T MRI 系统在内的各种磁场强度下的有效性。

结果

台式测试表明,即使高度微型化,所提出的平衡-不平衡变压器也能实现可接受的共模抑制比。使用印刷电容器可显著减小平衡-不平衡变压器的长度,并确保高度的重现性。研究结果表明,所提出的平衡-不平衡变压器即使放置在靠近样品的位置,也不会对射频场产生失真,因此适用于柔性线圈、可穿戴线圈和高密度线圈,特别是在高磁场 MRI 中。

结论

印刷同轴电容器制造过程中的可重复性允许简单的制造,并确保生产的一致性。这些进展为柔性线圈、可穿戴线圈和高密度线圈的开发铺平了道路。

相似文献

2
Miniature and flexible Bazooka balun for high-field MRI.微型灵活的巴祖卡平衡-不平衡变压器用于高场 MRI。
J Magn Reson. 2023 Nov;356:107577. doi: 10.1016/j.jmr.2023.107577. Epub 2023 Oct 25.
3
Float solenoid balun for MRI.用于磁共振成像(MRI)的浮动螺线管巴伦。
NMR Biomed. 2025 Jan;38(1):e5292. doi: 10.1002/nbm.5292. Epub 2024 Nov 8.
6
Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS.用于多核 MRI 和 MRS 的双调谐晶格巴伦。
IEEE Trans Med Imaging. 2022 Jun;41(6):1420-1430. doi: 10.1109/TMI.2022.3140717. Epub 2022 Jun 1.
8
RF surface receive array coils: the art of an LC circuit.RF 表面接收阵列线圈:LC 电路的艺术。
J Magn Reson Imaging. 2013 Jul;38(1):12-25. doi: 10.1002/jmri.24159. Epub 2013 May 6.
10
Multimodal surface coils for low field MR imaging.多模态表面线圈用于低场磁共振成像。
Magn Reson Imaging. 2024 Oct;112:107-115. doi: 10.1016/j.mri.2024.07.005. Epub 2024 Jul 4.

本文引用的文献

1
Parametric Design of a 3D-Printed Removable Common-Mode Trap for Magnetic Resonance Imaging.用于磁共振成像的3D打印可移除共模陷波器的参数化设计
IEEE MTT-S Int Microw Biomed Conf. 2023 Sep;2023:127-129. doi: 10.1109/imbioc56839.2023.10304882. Epub 2023 Nov 7.
2
Miniature and flexible Bazooka balun for high-field MRI.微型灵活的巴祖卡平衡-不平衡变压器用于高场 MRI。
J Magn Reson. 2023 Nov;356:107577. doi: 10.1016/j.jmr.2023.107577. Epub 2023 Oct 25.
3
Panoramic Magnetic Resonance Imaging of the Breast With a Wearable Coil Vest.穿戴式线圈背心的乳房全景磁共振成像。
Invest Radiol. 2023 Nov 1;58(11):799-810. doi: 10.1097/RLI.0000000000000991. Epub 2023 May 27.
5
Dual-Tuned Lattice Balun for Multi-Nuclear MRI and MRS.用于多核 MRI 和 MRS 的双调谐晶格巴伦。
IEEE Trans Med Imaging. 2022 Jun;41(6):1420-1430. doi: 10.1109/TMI.2022.3140717. Epub 2022 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验