Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.
Magn Reson Med. 2025 Jan;93(1):422-432. doi: 10.1002/mrm.30268. Epub 2024 Aug 27.
There is currently a strong trend in developing RF coils that are high-density, lightweight, and highly flexible. In addition to the resonator structure of the RF coil itself, the balun or cable trap circuit serves as another essential element in the functionality and sensitivity of RF coils. This study explores the development and application of reproducible highly miniaturized baluns in RF coil design.
We introduce a novel approach to producing Bazooka baluns with printed coaxial capacitors, enabling the achievement of significant capacitance per unit length. Rigorous electromagnetic simulations and thorough hardware fabrication validate the efficacy of the proposed design across various magnetic field strengths, including 1.5 T, 3 T, and 7 T MRI systems.
Bench testing reveals that the proposed balun can achieve an acceptable common-mode rejection ratio even when it is highly miniaturized. The use of printed capacitors allows for a notable reduction in balun length and ensures high reproducibility. Findings demonstrate that the proposed balun exhibits no RF field distortion even when placed close to the sample, making it suitable for flexible coils, wearable coils, and high-density coils, particularly in high-field MRI.
The reproducibility inherent in the manufacturing process of printed coaxial capacitors allows for simple fabrication and ensures consistency in production. These advancements pave the way for the development of flexible coils, wearable coils, and high-density coils.
目前,开发高密度、轻量级和高柔性的射频线圈是一个强烈的趋势。除了射频线圈本身的谐振器结构外,平衡-不平衡变压器或电缆陷波器电路作为射频线圈功能和灵敏度的另一个重要元件。本研究探讨了在射频线圈设计中可重复、高度微型化的平衡-不平衡变压器的开发和应用。
我们介绍了一种使用印刷同轴电容器制作 Bazooka 平衡-不平衡变压器的新方法,可实现单位长度的显著电容。通过严格的电磁仿真和全面的硬件制作,验证了该设计在包括 1.5T、3T 和 7T MRI 系统在内的各种磁场强度下的有效性。
台式测试表明,即使高度微型化,所提出的平衡-不平衡变压器也能实现可接受的共模抑制比。使用印刷电容器可显著减小平衡-不平衡变压器的长度,并确保高度的重现性。研究结果表明,所提出的平衡-不平衡变压器即使放置在靠近样品的位置,也不会对射频场产生失真,因此适用于柔性线圈、可穿戴线圈和高密度线圈,特别是在高磁场 MRI 中。
印刷同轴电容器制造过程中的可重复性允许简单的制造,并确保生产的一致性。这些进展为柔性线圈、可穿戴线圈和高密度线圈的开发铺平了道路。