Suppr超能文献

AttPNet:基于注意力的深度神经网络用于 3D 点集分析。

AttPNet: Attention-Based Deep Neural Network for 3D Point Set Analysis.

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.

Department of Computer Science, University of California, Irvine, CA 92697, USA.

出版信息

Sensors (Basel). 2020 Sep 23;20(19):5455. doi: 10.3390/s20195455.

Abstract

Point set is a major type of 3D structure representation format characterized by its data availability and compactness. Most former deep learning-based point set models pay equal attention to different point set regions and channels, thus having limited ability in focusing on small regions and specific channels that are important for characterizing the object of interest. In this paper, we introduce a novel model named Attention-based Point Network (AttPNet). It uses attention mechanism for both global feature masking and channel weighting to focus on characteristic regions and channels. There are two branches in our model. The first branch calculates an attention mask for every point. The second branch uses convolution layers to abstract global features from point sets, where channel attention block is adapted to focus on important channels. Evaluations on the ModelNet40 benchmark dataset show that our model outperforms the existing best model in classification tasks by 0.7% without voting. In addition, experiments on augmented data demonstrate that our model is robust to rotational perturbations and missing points. We also design a Electron Cryo-Tomography (ECT) point cloud dataset and further demonstrate our model's ability in dealing with fine-grained structures on the ECT dataset.

摘要

点集是一种主要的 3D 结构表示格式,其特点是数据可用性和紧凑性。以前的大多数基于深度学习的点集模型对等关注不同的点集区域和通道,因此在关注对目标对象进行特征描述的小区域和特定通道方面的能力有限。在本文中,我们引入了一种名为基于注意力的点网络(AttPNet)的新模型。它使用注意力机制对点集进行全局特征掩蔽和通道加权,以关注特征区域和通道。我们的模型有两个分支。第一个分支为每个点计算一个注意力掩模。第二个分支使用卷积层从点云中提取全局特征,其中通道注意力块用于关注重要的通道。在 ModelNet40 基准数据集上的评估表明,在没有投票的情况下,我们的模型在分类任务中的表现优于现有的最佳模型,提高了 0.7%。此外,在扩充数据上的实验表明,我们的模型对旋转扰动和点缺失具有鲁棒性。我们还设计了一个电子晶体断层扫描(ECT)点云数据集,并进一步展示了我们的模型在 ECT 数据集上处理细粒度结构的能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e8d/7582494/ce9d7d50d370/sensors-20-05455-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验