Suppr超能文献

基于层次化局部视图注意力的细粒度三维形状分类

Fine-Grained 3D Shape Classification With Hierarchical Part-View Attention.

作者信息

Liu Xinhai, Han Zhizhong, Liu Yu-Shen, Zwicker Matthias

出版信息

IEEE Trans Image Process. 2021;30:1744-1758. doi: 10.1109/TIP.2020.3048623. Epub 2021 Jan 14.

Abstract

Fine-grained 3D shape classification is important for shape understanding and analysis, which poses a challenging research problem. However, the studies on the fine-grained 3D shape classification have rarely been explored, due to the lack of fine-grained 3D shape benchmarks. To address this issue, we first introduce a new 3D shape dataset (named FG3D dataset) with fine-grained class labels, which consists of three categories including airplane, car and chair. Each category consists of several subcategories at a fine-grained level. According to our experiments under this fine-grained dataset, we find that state-of-the-art methods are significantly limited by the small variance among subcategories in the same category. To resolve this problem, we further propose a novel fine-grained 3D shape classification method named FG3D-Net to capture the fine-grained local details of 3D shapes from multiple rendered views. Specifically, we first train a Region Proposal Network (RPN) to detect the generally semantic parts inside multiple views under the benchmark of generally semantic part detection. Then, we design a hierarchical part-view attention aggregation module to learn a global shape representation by aggregating generally semantic part features, which preserves the local details of 3D shapes. The part-view attention module hierarchically leverages part-level and view-level attention to increase the discriminability of our features. The part-level attention highlights the important parts in each view while the view-level attention highlights the discriminative views among all the views of the same object. In addition, we integrate a Recurrent Neural Network (RNN) to capture the spatial relationships among sequential views from different viewpoints. Our results under the fine-grained 3D shape dataset show that our method outperforms other state-of-the-art methods. The FG3D dataset is available at https://github.com/liuxinhai/FG3D-Net.

摘要

细粒度三维形状分类对于形状理解和分析至关重要,这是一个具有挑战性的研究问题。然而,由于缺乏细粒度三维形状基准,对细粒度三维形状分类的研究很少被探索。为了解决这个问题,我们首先引入了一个具有细粒度类别标签的新三维形状数据集(名为FG3D数据集),它由飞机、汽车和椅子三个类别组成。每个类别在细粒度级别上又包含几个子类别。根据我们在这个细粒度数据集上的实验,我们发现现有的方法受到同一类别中子类别之间小方差的显著限制。为了解决这个问题,我们进一步提出了一种名为FG3D-Net的新颖的细粒度三维形状分类方法,以从多个渲染视图中捕捉三维形状的细粒度局部细节。具体来说,我们首先训练一个区域提议网络(RPN),在一般语义部分检测的基准下检测多个视图中的一般语义部分。然后,我们设计了一个分层部分视图注意力聚合模块,通过聚合一般语义部分特征来学习全局形状表示,该模块保留了三维形状的局部细节。部分视图注意力模块分层利用部分级和视图级注意力来提高我们特征的可区分性。部分级注意力突出每个视图中的重要部分,而视图级注意力突出同一物体所有视图中的可区分视图。此外,我们集成了一个递归神经网络(RNN)来捕捉来自不同视点的顺序视图之间的空间关系。我们在细粒度三维形状数据集上的结果表明,我们的方法优于其他现有的方法。FG3D数据集可在https://github.com/liuxinhai/FG3D-Net获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验