Suppr超能文献

高效的基因组最佳线性无偏预测(BLUP)加权方法,适用于数量性状的遗传结构。

Efficient weighting methods for genomic best linear-unbiased prediction (BLUP) adapted to the genetic architectures of quantitative traits.

机构信息

College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China.

College of Information, Shanxi Agricultural University, Taigu, China.

出版信息

Heredity (Edinb). 2021 Feb;126(2):320-334. doi: 10.1038/s41437-020-00372-y. Epub 2020 Sep 26.

Abstract

Genomic best linear-unbiased prediction (GBLUP) assumes equal variance for all marker effects, which is suitable for traits that conform to the infinitesimal model. For traits controlled by major genes, Bayesian methods with shrinkage priors or genome-wide association study (GWAS) methods can be used to identify causal variants effectively. The information from Bayesian/GWAS methods can be used to construct the weighted genomic relationship matrix (G). However, it remains unclear which methods perform best for traits varying in genetic architecture. Therefore, we developed several methods to optimize the performance of weighted GBLUP and compare them with other available methods using simulated and real data sets. First, two types of methods (marker effects with local shrinkage or normal prior) were used to obtain test statistics and estimates for each marker effect. Second, three weighted G matrices were constructed based on the marker information from the first step: (1) the genomic-feature-weighted G, (2) the estimated marker-variance-weighted G, and (3) the absolute value of the estimated marker-effect-weighted G. Following the above process, six different weighted GBLUP methods (local shrinkage/normal-prior GF/EV/AEWGBLUP) were proposed for genomic prediction. Analyses with both simulated and real data demonstrated that these options offer flexibility for optimizing the weighted GBLUP for traits with a broad spectrum of genetic architectures. The advantage of weighting methods over GBLUP in terms of accuracy was trait dependant, ranging from 14.8% to marginal for simulated traits and from 44% to marginal for real traits. Local-shrinkage prior EVWGBLUP is superior for traits mainly controlled by loci of a large effect. Normal-prior AEWGBLUP performs well for traits mainly controlled by loci of moderate effect. For traits controlled by some loci with large effects (explain 25-50% genetic variance) and a range of loci with small effects, GFWGBLUP has advantages. In conclusion, the optimal weighted GBLUP method for genomic selection should take both the genetic architecture and number of QTLs of traits into consideration carefully.

摘要

基因组最佳线性无偏预测(GBLUP)假设所有标记效应的方差相等,适用于符合无限模型的性状。对于受主基因控制的性状,可以使用贝叶斯方法(具有收缩先验或全基因组关联研究(GWAS)方法)来有效地识别因果变异。贝叶斯/GWAS 方法的信息可用于构建加权基因组关系矩阵(G)。然而,对于遗传结构不同的性状,哪种方法表现最好仍不清楚。因此,我们开发了几种方法来优化加权 GBLUP 的性能,并使用模拟和真实数据集将其与其他可用方法进行比较。首先,使用两种类型的方法(具有局部收缩或正态先验的标记效应)来获得每个标记效应的检验统计量和估计值。其次,基于第一步的标记信息构建了三个加权 G 矩阵:(1)基于基因组特征的加权 G,(2)基于估计的标记方差的加权 G,和(3)基于估计的标记效应的绝对值的加权 G。在完成上述步骤后,针对基因组预测,提出了六种不同的加权 GBLUP 方法(局部收缩/正态先验 GF/EV/AEWGBLUP)。模拟和真实数据分析表明,这些选项为具有广泛遗传结构的性状提供了优化加权 GBLUP 的灵活性。加权方法相对于 GBLUP 在准确性方面的优势是性状依赖的,从模拟性状的 14.8%到边缘,从真实性状的 44%到边缘。对于主要由大效应位点控制的性状,局部收缩先验 EVWGBLUP 更优。对于主要由中等效应位点控制的性状,正态先验 AEWGBLUP 表现良好。对于受一些大效应位点(解释 25-50%遗传方差)和一些小效应位点控制的性状,GFWGBLUP 具有优势。总之,基因组选择的最佳加权 GBLUP 方法应仔细考虑性状的遗传结构和 QTL 数量。

相似文献

引用本文的文献

本文引用的文献

2
Fast and flexible linear mixed models for genome-wide genetics.快速灵活的全基因组遗传学线性混合模型。
PLoS Genet. 2019 Feb 8;15(2):e1007978. doi: 10.1371/journal.pgen.1007978. eCollection 2019 Feb.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验