Suppr超能文献

利用先前的基因本体信息改进玉米基因组预测取决于性状和环境条件。

Improvement in genomic prediction of maize with prior gene ontology information depends on traits and environmental conditions.

作者信息

Ali Baber, Mary-Huard Tristan, Charcosset Alain, Moreau Laurence, Rincent Renaud

机构信息

INRAE, CNRS, AgroParisTech, GQE-Le Moulon, Université Paris-Saclay, Gif-sur-Yvette, France.

MIA Paris-Saclay, INRAE, AgroParisTech, Université Paris-Saclay, Palaiseau, France.

出版信息

Plant Genome. 2025 Mar;18(1):e20553. doi: 10.1002/tpg2.20553.

Abstract

Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underlying biological processes, making prediction models robust and accurate. Gene ontology (GO) terms can be used for this purpose, and the information can be integrated into genomic prediction models through marker categorization. It allows likely causal markers to account for a certain portion of genetic variance independently from the remaining markers. We systematically tested a list of 5110 GO terms for their predictive performance for physiological (platform traits) and productivity traits (field grain yield) in a maize (Zea mays L.) panel using genomic features best linear unbiased prediction (GFBLUP) model. Predictive abilities were compared to the classical genomic best linear unbiased prediction (GBLUP). Predictive gains with categorizing markers based on a given GO term strongly depend on the trait and on the growth conditions, as a term can be useful for a given trait in a given condition or somewhat similar conditions but not useful for the same trait in a different condition. Overall, results of all GFBLUP models compared to GBLUP show that the former might be less efficient than the latter. Even though we could not identify a prior criterion to determine which GO terms can offer benefit to a given trait, we could a posteriori find biological interpretations of the results, meaning that GFBLUP could be helpful if more about the gene functions and their relationships with the growth conditions was known.

摘要

经典的基因组预测方法依赖于性状与标记之间的统计关联,而非其生物学意义。基于生物学知识选择基因组区域,通过考虑潜在的生物学过程,有助于对多态性进行优先级排序,从而使预测模型更加稳健和准确。基因本体(GO)术语可用于此目的,并且可以通过标记分类将该信息整合到基因组预测模型中。这使得可能的因果标记能够独立于其余标记解释一定比例的遗传变异。我们使用基因组最佳线性无偏预测(GFBLUP)模型,系统地测试了5110个GO术语对玉米(Zea mays L.)群体中生理(平台性状)和产量性状(田间籽粒产量)的预测性能。将预测能力与经典的基因组最佳线性无偏预测(GBLUP)进行了比较。基于给定GO术语对标记进行分类的预测增益在很大程度上取决于性状和生长条件,因为一个术语在给定条件或有些相似的条件下可能对给定性状有用,但在不同条件下对同一性状可能无用。总体而言,所有GFBLUP模型与GBLUP相比的结果表明,前者可能不如后者有效。尽管我们无法确定一个先验标准来确定哪些GO术语可以对给定性状有益,但我们可以事后对结果进行生物学解释,这意味着如果更多地了解基因功能及其与生长条件的关系,GFBLUP可能会有所帮助。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7420/11711123/6d802aa9ea9f/TPG2-18-e20553-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验