Suppr超能文献

快速灵活的全基因组遗传学线性混合模型。

Fast and flexible linear mixed models for genome-wide genetics.

机构信息

Department of Plant Sciences, University of California Davis, Davis, California, United States of America.

Department of Biostatistics, Brown University, Providence, Rhode Island, United States of America.

出版信息

PLoS Genet. 2019 Feb 8;15(2):e1007978. doi: 10.1371/journal.pgen.1007978. eCollection 2019 Feb.

Abstract

Linear mixed effect models are powerful tools used to account for population structure in genome-wide association studies (GWASs) and estimate the genetic architecture of complex traits. However, fully-specified models are computationally demanding and common simplifications often lead to reduced power or biased inference. We describe Grid-LMM (https://github.com/deruncie/GridLMM), an extendable algorithm for repeatedly fitting complex linear models that account for multiple sources of heterogeneity, such as additive and non-additive genetic variance, spatial heterogeneity, and genotype-environment interactions. Grid-LMM can compute approximate (yet highly accurate) frequentist test statistics or Bayesian posterior summaries at a genome-wide scale in a fraction of the time compared to existing general-purpose methods. We apply Grid-LMM to two types of quantitative genetic analyses. The first is focused on accounting for spatial variability and non-additive genetic variance while scanning for QTL; and the second aims to identify gene expression traits affected by non-additive genetic variation. In both cases, modeling multiple sources of heterogeneity leads to new discoveries.

摘要

线性混合效应模型是用于在全基因组关联研究(GWAS)中考虑群体结构并估计复杂性状遗传结构的强大工具。然而,完全指定的模型计算要求高,常见的简化通常会导致降低功效或有偏差的推断。我们描述了 Grid-LMM(https://github.com/deruncie/GridLMM),这是一种可扩展的算法,用于反复拟合复杂的线性模型,以考虑多种异质性来源,如加性和非加性遗传方差、空间异质性和基因型-环境相互作用。与现有的通用方法相比,Grid-LMM 可以在一小部分时间内以基因组范围计算近似(但非常准确)的频率主义检验统计量或贝叶斯后验摘要。我们将 Grid-LMM 应用于两种类型的定量遗传分析。第一种方法侧重于在扫描 QTL 时考虑空间可变性和非加性遗传方差;第二种方法旨在识别受非加性遗传变异影响的基因表达性状。在这两种情况下,对多种异质性来源的建模都会带来新的发现。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1111/6383949/dcdb806e4fbe/pgen.1007978.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验