Suppr超能文献

一种受大脑启发的心理理论模型。

A Brain-Inspired Model of Theory of Mind.

作者信息

Zeng Yi, Zhao Yuxuan, Zhang Tielin, Zhao Dongcheng, Zhao Feifei, Lu Enmeng

机构信息

Research Center for Brain-Inspired Intelligence, Institute of Automation, Chinese Academy of Sciences, Beijing, China.

Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Beijing, China.

出版信息

Front Neurorobot. 2020 Aug 28;14:60. doi: 10.3389/fnbot.2020.00060. eCollection 2020.

Abstract

Theory of mind (ToM) is the ability to attribute mental states to oneself and others, and to understand that others have beliefs that are different from one's own. Although functional neuroimaging techniques have been widely used to establish the neural correlates implicated in ToM, the specific mechanisms are still not clear. We make our efforts to integrate and adopt existing biological findings of ToM, bridging the gap through computational modeling, to build a brain-inspired computational model for ToM. We propose a Brain-inspired Model of Theory of Mind (Brain-ToM model), and the model is applied to a humanoid robot to challenge the false belief tasks, two classical tasks designed to understand the mechanisms of ToM from Cognitive Psychology. With this model, the robot can learn to understand object permanence and visual access from self-experience, then uses these learned experience to reason about other's belief. We computationally validated that the self-experience, maturation of correlate brain areas (e.g., calculation capability) and their connections (e.g., inhibitory control) are essential for ToM, and they have shown their influences on the performance of the participant robot in false-belief task. The theoretic modeling and experimental validations indicate that the model is biologically plausible, and computationally feasible as a foundation for robot theory of mind.

摘要

心理理论(ToM)是一种将心理状态归因于自己和他人,并理解他人拥有与自己不同信念的能力。尽管功能性神经成像技术已被广泛用于确定与心理理论相关的神经关联,但具体机制仍不清楚。我们致力于整合和采用现有的心理理论生物学研究成果,通过计算建模来弥合差距,构建一个受大脑启发的心理理论计算模型。我们提出了一个受大脑启发的心理理论模型(Brain-ToM模型),并将该模型应用于一个人形机器人,以挑战错误信念任务,这是认知心理学中设计用于理解心理理论机制的两个经典任务。通过这个模型,机器人可以从自身经验中学习理解客体永久性和视觉可达性,然后利用这些学到的经验来推断他人的信念。我们通过计算验证了自我经验、相关脑区的成熟(如计算能力)及其连接(如抑制控制)对心理理论至关重要,并且它们已经在错误信念任务中显示出对参与实验的机器人表现的影响。理论建模和实验验证表明,该模型在生物学上是合理的,并且在计算上是可行的,可作为机器人心理理论的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45be/7483660/8c7b2160eedb/fnbot-14-00060-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验