Suppr超能文献

认知科学、神经科学与人工智能交叉领域的心理理论与偏好学习:综述

Theory of Mind and Preference Learning at the Interface of Cognitive Science, Neuroscience, and AI: A Review.

作者信息

Langley Christelle, Cirstea Bogdan Ionut, Cuzzolin Fabio, Sahakian Barbara J

机构信息

Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.

School of Engineering, Computing and Mathematics, Oxford Brookes University, Oxford, United Kingdom.

出版信息

Front Artif Intell. 2022 Apr 5;5:778852. doi: 10.3389/frai.2022.778852. eCollection 2022.

Abstract

Theory of Mind (ToM)-the ability of the human mind to attribute mental states to others-is a key component of human cognition. In order to understand other people's mental states or viewpoint and to have successful interactions with others within social and occupational environments, this form of social cognition is essential. The same capability of inferring human mental states is a prerequisite for artificial intelligence (AI) to be integrated into society, for example in healthcare and the motoring industry. Autonomous cars will need to be able to infer the mental states of human drivers and pedestrians to predict their behavior. In the literature, there has been an increasing understanding of ToM, specifically with increasing cognitive science studies in children and in individuals with Autism Spectrum Disorder. Similarly, with neuroimaging studies there is now a better understanding of the neural mechanisms that underlie ToM. In addition, new AI algorithms for inferring human mental states have been proposed with more complex applications and better generalisability. In this review, we synthesize the existing understanding of ToM in cognitive and neurosciences and the AI computational models that have been proposed. We focus on preference learning as an area of particular interest and the most recent neurocognitive and computational ToM models. We also discuss the limitations of existing models and hint at potential approaches to allow ToM models to fully express the complexity of the human mind in all its aspects, including values and preferences.

摘要

心理理论(ToM)——人类心智将心理状态归因于他人的能力——是人类认知的关键组成部分。为了理解他人的心理状态或观点,并在社会和职业环境中与他人成功互动,这种社会认知形式至关重要。推断人类心理状态的同样能力是人工智能(AI)融入社会的先决条件,例如在医疗保健和汽车行业。自动驾驶汽车将需要能够推断人类驾驶员和行人的心理状态,以预测他们的行为。在文献中,人们对心理理论的理解不断增加,特别是随着对儿童和自闭症谱系障碍个体的认知科学研究不断增多。同样,通过神经影像学研究,现在对心理理论背后的神经机制有了更好的理解。此外,已经提出了用于推断人类心理状态的新AI算法,具有更复杂的应用和更好的通用性。在这篇综述中,我们综合了认知科学和神经科学中对心理理论的现有理解以及已提出的AI计算模型。我们将重点放在偏好学习这一特别感兴趣的领域以及最新的神经认知和计算心理理论模型上。我们还讨论了现有模型的局限性,并暗示了潜在的方法,以使心理理论模型能够全面表达人类心智在各个方面的复杂性,包括价值观和偏好。

相似文献

1
Theory of Mind and Preference Learning at the Interface of Cognitive Science, Neuroscience, and AI: A Review.
Front Artif Intell. 2022 Apr 5;5:778852. doi: 10.3389/frai.2022.778852. eCollection 2022.
3
Theory of Mind From Observation in Cognitive Models and Humans.
Top Cogn Sci. 2022 Oct;14(4):665-686. doi: 10.1111/tops.12553. Epub 2021 Jun 24.
4
Neurocognitive considerations when assessing Theory of Mind in Autism Spectrum Disorder.
J Child Adolesc Ment Health. 2016 Oct;28(3):233-241. doi: 10.2989/17280583.2016.1268141.
5
Reading wild minds: A computational assay of Theory of Mind sophistication across seven primate species.
PLoS Comput Biol. 2017 Nov 7;13(11):e1005833. doi: 10.1371/journal.pcbi.1005833. eCollection 2017 Nov.
7
The developmental origins of naïve psychology in infancy.
Adv Child Dev Behav. 2009;37:55-104. doi: 10.1016/s0065-2407(09)03702-1.
8
Towards a computational model for higher orders of Theory of Mind in social agents.
Front Robot AI. 2024 Oct 2;11:1468756. doi: 10.3389/frobt.2024.1468756. eCollection 2024.
9
Theory of mind and decision science: Towards a typology of tasks and computational models.
Neuropsychologia. 2020 Sep;146:107488. doi: 10.1016/j.neuropsychologia.2020.107488. Epub 2020 May 12.

引用本文的文献

1
Generative AI Decision-Making Attributes in Complex Health Services: A Rapid Review.
Cureus. 2025 Jan 30;17(1):e78257. doi: 10.7759/cureus.78257. eCollection 2025 Jan.
3
The Minds We Make: A Philosophical Inquiry into Theory of Mind and Artificial Intelligence.
Integr Psychol Behav Sci. 2025 Jan 2;59(1):10. doi: 10.1007/s12124-024-09876-2.
4
Perceived support and AI literacy: the mediating role of psychological needs satisfaction.
Front Psychol. 2024 Jun 14;15:1415248. doi: 10.3389/fpsyg.2024.1415248. eCollection 2024.
5
Three levels at which the user's cognition can be represented in artificial intelligence.
Front Artif Intell. 2023 Jan 13;5:1092053. doi: 10.3389/frai.2022.1092053. eCollection 2022.

本文引用的文献

2
The Moral Consideration of Artificial Entities: A Literature Review.
Sci Eng Ethics. 2021 Aug 9;27(4):53. doi: 10.1007/s11948-021-00331-8.
3
Dopaminergic brainstem disconnection is common to pharmacological and pathological consciousness perturbation.
Proc Natl Acad Sci U S A. 2021 Jul 27;118(30). doi: 10.1073/pnas.2026289118.
5
Passive Brain-Computer Interfaces for Enhanced Human-Robot Interaction.
Front Robot AI. 2020 Oct 2;7:125. doi: 10.3389/frobt.2020.00125. eCollection 2020.
6
A Brain-Inspired Model of Theory of Mind.
Front Neurorobot. 2020 Aug 28;14:60. doi: 10.3389/fnbot.2020.00060. eCollection 2020.
7
Theory of mind and decision science: Towards a typology of tasks and computational models.
Neuropsychologia. 2020 Sep;146:107488. doi: 10.1016/j.neuropsychologia.2020.107488. Epub 2020 May 12.
8
Knowing me, knowing you: theory of mind in AI.
Psychol Med. 2020 May;50(7):1057-1061. doi: 10.1017/S0033291720000835. Epub 2020 May 7.
9
Theory of mind mediates the relations of language and domain-general cognitions to discourse comprehension.
J Exp Child Psychol. 2020 Jun;194:104813. doi: 10.1016/j.jecp.2020.104813. Epub 2020 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验