Alam Shafiul, Abdullah Chowdhury S, Aishwarya Richa, Morshed Mahboob, Bhuiyan Md Shenuarin
Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, United States.
Front Physiol. 2020 Aug 27;11:1054. doi: 10.3389/fphys.2020.01054. eCollection 2020.
Mitochondria are the key to properly functioning energy generation in the metabolically demanding cardiomyocytes and thus essential to healthy heart contractility on a beat-to-beat basis. Mitochondria being the central organelle for cellular metabolism and signaling in the heart, its dysfunction leads to cardiovascular disease. The healthy mitochondrial functioning critical to maintaining cardiomyocyte viability and contractility is accomplished by adaptive changes in the dynamics, biogenesis, and degradation of the mitochondria to ensure cellular proteostasis. Recent compelling evidence suggests that the classical protein quality control system in cardiomyocytes is also under constant mitochondrial control, either directly or indirectly. Impairment of cytosolic protein quality control may affect the position of the mitochondria in relation to other organelles, as well as mitochondrial morphology and function, and could also activate mitochondrial proteostasis. Despite a growing interest in the mitochondrial quality control system, very little information is available about the molecular function of mitochondria in cardiac proteostasis. In this review, we bring together current understanding of the adaptations and role of the mitochondria in cardiac proteostasis and describe the adaptive/maladaptive changes observed in the mitochondrial network required to maintain proteomic integrity. We also highlight the key mitochondrial signaling pathways activated in response to proteotoxic stress as a cellular mechanism to protect the heart from proteotoxicity. A deeper understanding of the molecular mechanisms of mitochondrial adaptations and their role in cardiac proteostasis will help to develop future therapeutics to protect the heart from cardiovascular diseases.
线粒体是代谢需求高的心肌细胞中能量正常产生的关键,因此对于心脏逐搏健康收缩至关重要。线粒体是心脏细胞代谢和信号传导的核心细胞器,其功能障碍会导致心血管疾病。通过线粒体动态、生物发生和降解的适应性变化来确保细胞蛋白质稳态,从而实现对维持心肌细胞活力和收缩力至关重要的线粒体健康功能。最近有令人信服的证据表明,心肌细胞中的经典蛋白质质量控制系统也直接或间接地受到线粒体的持续控制。胞质蛋白质质量控制的受损可能会影响线粒体相对于其他细胞器的位置,以及线粒体的形态和功能,还可能激活线粒体蛋白质稳态。尽管人们对线粒体质量控制系统的兴趣日益浓厚,但关于线粒体在心脏蛋白质稳态中的分子功能的信息却非常少。在这篇综述中,我们汇总了目前对线粒体在心脏蛋白质稳态中的适应性和作用的理解,并描述了为维持蛋白质组完整性而在线粒体网络中观察到的适应性/适应不良变化。我们还强调了响应蛋白质毒性应激而激活的关键线粒体信号通路,这是一种保护心脏免受蛋白质毒性的细胞机制。对线粒体适应性的分子机制及其在心脏蛋白质稳态中的作用有更深入的了解,将有助于开发未来保护心脏免受心血管疾病影响的治疗方法。