Suppr超能文献

利用机器学习和深度学习对共聚焦图像中的细胞周期标志物进行体积分割

Volumetric Segmentation of Cell Cycle Markers in Confocal Images Using Machine Learning and Deep Learning.

作者信息

Khan Faraz Ahmad, Voß Ute, Pound Michael P, French Andrew P

机构信息

Schools of Computer Science and Biosciences, University of Nottingham, Nottingham, United Kingdom.

出版信息

Front Plant Sci. 2020 Aug 28;11:1275. doi: 10.3389/fpls.2020.01275. eCollection 2020.

Abstract

Understanding plant growth processes is important for many aspects of biology and food security. Automating the observations of plant development-a process referred to as plant phenotyping-is increasingly important in the plant sciences, and is often a bottleneck. Automated tools are required to analyze the data in microscopy images depicting plant growth, either locating or counting regions of cellular features in images. In this paper, we present to the plant community an introduction to and exploration of two machine learning approaches to address the problem of marker localization in confocal microscopy. First, a comparative study is conducted on the classification accuracy of common conventional machine learning algorithms, as a means to highlight challenges with these methods. Second, a 3D (volumetric) deep learning approach is developed and presented, including consideration of appropriate loss functions and training data. A qualitative and quantitative analysis of all the results produced is performed. Evaluation of all approaches is performed on an unseen time-series sequence comprising several individual 3D volumes, capturing plant growth. The comparative analysis shows that the deep learning approach produces more accurate and robust results than traditional machine learning. To accompany the paper, we are releasing the 4D point annotation tool used to generate the annotations, in the form of a plugin for the popular ImageJ (FIJI) software. Network models and example datasets will also be available online.

摘要

了解植物生长过程对于生物学和粮食安全的许多方面都很重要。实现植物发育观测的自动化——这一过程被称为植物表型分析——在植物科学中变得越来越重要,而且往往是一个瓶颈。需要自动化工具来分析描绘植物生长的显微镜图像中的数据,无论是定位图像中细胞特征的区域还是对其进行计数。在本文中,我们向植物学界介绍并探索两种机器学习方法,以解决共聚焦显微镜中标记定位的问题。首先,对常见传统机器学习算法的分类准确性进行了比较研究,以此突出这些方法所面临的挑战。其次,开发并展示了一种3D(体素)深度学习方法,包括对适当损失函数和训练数据的考量。对所产生的所有结果进行了定性和定量分析。所有方法的评估都是在一个未见过的时间序列序列上进行的,该序列由几个捕捉植物生长的单独3D体积组成。比较分析表明,深度学习方法比传统机器学习产生的结果更准确、更稳健。为配合本文,我们以流行的ImageJ(FIJI)软件插件的形式发布了用于生成注释的4D点注释工具。网络模型和示例数据集也将在网上提供。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/95d9/7483761/c3d2e872dc91/fpls-11-01275-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验