Suppr超能文献

卷积神经网络在三维显微镜数据集细菌识别中的性能。

Performance of convolutional neural networks for identification of bacteria in 3D microscopy datasets.

机构信息

Department of Physics, Institute of Molecular Biology, Materials Science Institute, University of Oregon, Eugene, Oregon, United States of America.

出版信息

PLoS Comput Biol. 2018 Dec 3;14(12):e1006628. doi: 10.1371/journal.pcbi.1006628. eCollection 2018 Dec.

Abstract

Three-dimensional microscopy is increasingly prevalent in biology due to the development of techniques such as multiphoton, spinning disk confocal, and light sheet fluorescence microscopies. These methods enable unprecedented studies of life at the microscale, but bring with them larger and more complex datasets. New image processing techniques are therefore called for to analyze the resulting images in an accurate and efficient manner. Convolutional neural networks are becoming the standard for classification of objects within images due to their accuracy and generalizability compared to traditional techniques. Their application to data derived from 3D imaging, however, is relatively new and has mostly been in areas of magnetic resonance imaging and computer tomography. It remains unclear, for images of discrete cells in variable backgrounds as are commonly encountered in fluorescence microscopy, whether convolutional neural networks provide sufficient performance to warrant their adoption, especially given the challenges of human comprehension of their classification criteria and their requirements of large training datasets. We therefore applied a 3D convolutional neural network to distinguish bacteria and non-bacterial objects in 3D light sheet fluorescence microscopy images of larval zebrafish intestines. We find that the neural network is as accurate as human experts, outperforms random forest and support vector machine classifiers, and generalizes well to a different bacterial species through the use of transfer learning. We also discuss network design considerations, and describe the dependence of accuracy on dataset size and data augmentation. We provide source code, labeled data, and descriptions of our analysis pipeline to facilitate adoption of convolutional neural network analysis for three-dimensional microscopy data.

摘要

由于多光子、旋转盘共聚焦和光片荧光显微镜等技术的发展,三维显微镜在生物学中越来越普及。这些方法使人们能够以前所未有的方式研究微观尺度的生命,但也带来了更大、更复杂的数据集。因此,需要新的图像处理技术来准确、有效地分析由此产生的图像。与传统技术相比,卷积神经网络在图像分类方面的准确性和通用性使其成为标准。然而,它们在三维成像数据中的应用相对较新,主要集中在磁共振成像和计算机断层扫描领域。对于荧光显微镜中常见的具有不同背景的离散细胞图像,卷积神经网络是否提供了足够的性能来保证其采用,这仍然不清楚,特别是考虑到人类对其分类标准的理解和其对大型训练数据集的要求所带来的挑战。因此,我们将 3D 卷积神经网络应用于区分幼虫斑马鱼肠道的 3D 光片荧光显微镜图像中的细菌和非细菌物体。我们发现,神经网络与人类专家一样准确,优于随机森林和支持向量机分类器,并且通过使用迁移学习可以很好地推广到不同的细菌物种。我们还讨论了网络设计注意事项,并描述了准确性对数据集大小和数据增强的依赖性。我们提供了源代码、标记数据以及我们的分析管道的描述,以促进卷积神经网络分析在三维显微镜数据中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a54/6292638/e7065ccb6518/pcbi.1006628.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验