Suppr超能文献

综合加加速度作为对人工代理运动学亲和力的指标:涉及两位数抓握时食指运动的笔记本电脑和虚拟现实实验。

Integrated jerk as an indicator of affinity for artificial agent kinematics: laptop and virtual reality experiments involving index finger motion during two-digit grasping.

作者信息

Hirose James, Nishikawa Atsushi, Horiba Yosuke, Inui Shigeru, Pataky Todd C

机构信息

Department of Biomedical Engineering, Shinshu University, Ueda, Nagano, Japan.

Department of Mechanical Science and Bioengineering, Osaka University, Suita, Osaka, Japan.

出版信息

PeerJ. 2020 Sep 15;8:e9843. doi: 10.7717/peerj.9843. eCollection 2020.

Abstract

Uncanny valley research has shown that human likeness is an important consideration when designing artificial agents. It has separately been shown that artificial agents exhibiting human-like kinematics can elicit positive perceptual responses. However the kinematic characteristics underlying that perception have not been elucidated. This paper proposes kinematic jerk amplitude as a candidate metric for kinematic human likeness, and aims to determine whether a perceptual optimum exists over a range of jerk values. We created minimum-jerk two-digit grasp kinematics in a prosthetic hand model, then added different amplitudes of temporally smooth noise to yield a variety of animations involving different total jerk levels, ranging from maximally smooth to highly jerky. Subjects indicated their perceptual affinity for these animations by simultaneously viewing two different animations side-by-side, first using a laptop, then separately within a virtual reality (VR) environment. Results suggest that (a) subjects generally preferred smoother kinematics, (b) subjects exhibited a small preference for rougher-than minimum jerk kinematics in the laptop experiment, and that (c) the preference for rougher-than minimum-jerk kinematics was amplified in the VR experiment. These results suggest that non-maximally smooth kinematics may be perceptually optimal in robots and other artificial agents.

摘要

恐怖谷研究表明,在设计人工智能体时,类人性是一个重要的考量因素。此前已有研究分别表明,展现出类人运动学特征的人工智能体能够引发积极的感知反应。然而,这种感知背后的运动学特征尚未得到阐明。本文提出运动学加加速度幅值作为类人运动学的一个候选指标,并旨在确定在一系列加加速度值范围内是否存在一个感知最优值。我们在一个假肢手模型中创建了最小加加速度的两位数抓握运动学,然后添加不同幅值的时间平滑噪声,以生成各种涉及不同总加加速度水平的动画,范围从最大平滑到高度不平稳。受试者通过并排同时观看两个不同的动画来表明他们对这些动画的感知亲和力,先是使用笔记本电脑,然后分别在虚拟现实(VR)环境中进行。结果表明:(a)受试者通常更喜欢更平滑的运动学;(b)在笔记本电脑实验中,受试者对比最小加加速度更粗糙的运动学表现出轻微偏好;以及(c)在VR实验中,对比最小加加速度更粗糙的运动学的偏好被放大了。这些结果表明,非最大平滑的运动学在机器人和其他人工智能体中可能在感知上是最优的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37ab/7500322/27a80344ae8f/peerj-08-9843-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验