Barry Matthew C, Wise Kristopher E, Kalidindi Surya R, Kumar Satish
G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States.
Advanced Materials and Processing Branch, NASA Langley Research Center, Hampton, Virginia 23681, United States.
J Phys Chem Lett. 2020 Nov 5;11(21):9093-9099. doi: 10.1021/acs.jpclett.0c02271. Epub 2020 Oct 13.
This paper introduces voxelized atomic structure (VASt) potentials as a machine learning (ML) framework for developing interatomic potentials. The VASt framework utilizes a voxelized representation of the atomic structure directly as the input to a convolutional neural network (CNN). This allows for high-fidelity representations of highly complex and diverse spatial arrangements of the atomic environments of interest. The CNN implicitly establishes the low-dimensional features needed to correlate each atomic neighborhood to its net atomic force. The selection of the salient features of the atomic structure (i.e., feature engineering) in the VASt framework is implicit, comprehensive, automated, scalable, and highly efficient. The calibrated convolutional layers learn the complex spatial relationships and multibody interactions that govern the physics of atomic systems with remarkable fidelity. We show that VASt potentials predict highly accurate forces on two phases of silicon carbide and the thermal conductivity of silicon over a range of isotropic strain.
本文介绍了体素化原子结构(VASt)势,作为一种用于开发原子间势的机器学习(ML)框架。VASt框架直接利用原子结构的体素化表示作为卷积神经网络(CNN)的输入。这使得能够对感兴趣的原子环境的高度复杂和多样的空间排列进行高保真表示。CNN隐式地建立了将每个原子邻域与其净原子力相关联所需的低维特征。VASt框架中原子结构显著特征的选择(即特征工程)是隐式的、全面的、自动化的、可扩展的且高效的。经过校准的卷积层以极高的保真度学习控制原子系统物理的复杂空间关系和多体相互作用。我们表明,VASt势在一系列各向同性应变下,能对碳化硅的两个相预测出高度准确的力以及硅的热导率。