Department of Architectural Engineering, Dankook University, Yongin 16890, Korea.
Department of Applied Statistics, Dankook University, Yongin 16890, Korea.
Int J Environ Res Public Health. 2020 Sep 24;17(19):6997. doi: 10.3390/ijerph17196997.
Recently, artificial intelligence (AI) technologies have been employed to predict construction and demolition (C&D) waste generation. However, most studies have used machine learning models with continuous data input variables, applying algorithms, such as artificial neural networks, adaptive neuro-fuzzy inference systems, support vector machines, linear regression analysis, decision trees, and genetic algorithms. Therefore, machine learning algorithms may not perform as well when applied to categorical data. This article uses machine learning algorithms to predict C&D waste generation from a dataset, as a way to improve the accuracy of waste management in C&D facilities. These datasets include categorical (e.g., region, building structure, building use, wall material, and roofing material), and continuous data (particularly, gloss floor area), and a random forest (RF) algorithm was used. Results indicate that RF is an adequate machine learning algorithm for a small dataset consisting of categorical data, and even with a small dataset, an adequate prediction model can be developed. Despite the small dataset, the predictive performance according to the demolition waste (DW) type was R (Pearson's correlation coefficient) = 0.691-0.871, R (coefficient of determination) = 0.554-0.800, showing stable prediction performance. High prediction performance was observed using three (for mortar), five (for other DW types), or six (for concrete) input variables. This study is significant because the proposed RF model can predict DW generation using a small amount of data. Additionally, it demonstrates the possibility of applying AI to multi-purpose DW management.
最近,人工智能 (AI) 技术已被用于预测建筑和拆除 (C&D) 废物的产生。然而,大多数研究都使用具有连续数据输入变量的机器学习模型,应用算法,如人工神经网络、自适应神经模糊推理系统、支持向量机、线性回归分析、决策树和遗传算法。因此,机器学习算法在应用于分类数据时可能表现不佳。本文使用机器学习算法从数据集预测 C&D 废物的产生,以此提高 C&D 设施中废物管理的准确性。这些数据集包括分类数据(例如,地区、建筑结构、建筑用途、墙体材料和屋顶材料)和连续数据(特别是光泽地板面积),并使用随机森林 (RF) 算法。结果表明,RF 是一个适合包含分类数据的小数据集的机器学习算法,即使数据集较小,也可以开发出足够的预测模型。尽管数据集较小,但根据拆除废物 (DW) 类型的预测性能为 R(皮尔逊相关系数)= 0.691-0.871,R(确定系数)= 0.554-0.800,表现出稳定的预测性能。使用三个(用于灰浆)、五个(用于其他 DW 类型)或六个(用于混凝土)输入变量可以观察到高预测性能。这项研究意义重大,因为所提出的 RF 模型可以使用少量数据预测 DW 的产生。此外,它展示了将 AI 应用于多用途 DW 管理的可能性。