文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

石墨烯纳米片在智能和多功能生态复合材料开发中的潜力

The Potential of Graphene Nanoplatelets in the Development of Smart and Multifunctional Ecocomposites.

作者信息

Pereira Pedro, Ferreira Diana P, Araújo Joana C, Ferreira Armando, Fangueiro Raul

机构信息

Centre for Textile Science and Technology (2C2T), University of Minho, 4710-057 Guimarães, Portugal.

Center of Physics, University of Minho, 4710-057 Braga, Portugal.

出版信息

Polymers (Basel). 2020 Sep 24;12(10):2189. doi: 10.3390/polym12102189.


DOI:10.3390/polym12102189
PMID:32987931
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7600018/
Abstract

Graphene and its derivatives have shown outstanding potential in many fields and textile/composites industry are not an exception. Giving their extraordinary properties, Graphene Nanoplatelets (GNPs) are excellent candidates for providing new functionalities to fibers and composites. In this work, natural fabrics (flax) were functionalized with chitosan (CS) based polymeric formulations of GNPs to develop fibrous systems with electrical properties as well as other functionalities. One of the greatest disadvantages of using carbon-based materials for fabrics' impregnation is their difficult dispersion. Therefore, several polymers were used as matrices, binding and dispersive agents including chitosan, polyethylene glycol (PEG), and glycerol. All the systems were characterized using several techniques that demonstrated the presence and incorporation of the GNPs onto the composites. Besides their characterization, considering their use as smart materials for monitoring and sensing applications, electrical properties were also evaluated. The highest value obtained for electrical conductivity was 0.04 S m using 2% of GNPs. Furthermore, piezoresistive behavior was observed with Gauge Factor (GF) of 1.89 using 0.5% GNPs. Additionally, UV (ultraviolet) protection ability and hydrophobicity were analyzed, confirming the multifunctional behavior of the developed systems extending their potential of application in several areas.

摘要

石墨烯及其衍生物在许多领域都展现出了卓越的潜力,纺织/复合材料行业也不例外。鉴于其非凡的特性,石墨烯纳米片(GNPs)是为纤维和复合材料赋予新功能的极佳候选材料。在这项工作中,天然织物(亚麻)用基于壳聚糖(CS)的GNPs聚合物配方进行功能化处理,以开发具有电性能以及其他功能的纤维系统。使用碳基材料对织物进行浸渍的最大缺点之一是其难以分散。因此,使用了几种聚合物作为基质、粘结剂和分散剂,包括壳聚糖、聚乙二醇(PEG)和甘油。所有系统都采用了多种技术进行表征,这些技术证明了GNPs在复合材料上的存在和掺入。除了表征之外,考虑到它们作为用于监测和传感应用的智能材料的用途,还对电性能进行了评估。使用2%的GNPs时,获得的最高电导率值为0.04 S/m。此外,使用0.5%的GNPs时,观察到压阻行为,应变片系数(GF)为1.89。此外,还分析了紫外线防护能力和疏水性,证实了所开发系统的多功能特性,扩展了它们在多个领域的应用潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/45e49597df3a/polymers-12-02189-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/9d695b7d771a/polymers-12-02189-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/adda375591e9/polymers-12-02189-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/714cd5235e60/polymers-12-02189-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/a727bdc908cc/polymers-12-02189-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/8a5fbeaa3ccf/polymers-12-02189-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/2830a36bc3b0/polymers-12-02189-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/280902aabaf1/polymers-12-02189-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/df68bd3dfda7/polymers-12-02189-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/ea033fc6943a/polymers-12-02189-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/6ac16179bb40/polymers-12-02189-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/0b6fc677ccc9/polymers-12-02189-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/45e49597df3a/polymers-12-02189-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/9d695b7d771a/polymers-12-02189-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/adda375591e9/polymers-12-02189-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/714cd5235e60/polymers-12-02189-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/a727bdc908cc/polymers-12-02189-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/8a5fbeaa3ccf/polymers-12-02189-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/2830a36bc3b0/polymers-12-02189-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/280902aabaf1/polymers-12-02189-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/df68bd3dfda7/polymers-12-02189-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/ea033fc6943a/polymers-12-02189-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/6ac16179bb40/polymers-12-02189-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/0b6fc677ccc9/polymers-12-02189-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45e1/7600018/45e49597df3a/polymers-12-02189-g012.jpg

相似文献

[1]
The Potential of Graphene Nanoplatelets in the Development of Smart and Multifunctional Ecocomposites.

Polymers (Basel). 2020-9-24

[2]
Multifunctional Flax Fibres Based on the Combined Effect of Silver and Zinc Oxide (Ag/ZnO) Nanostructures.

Nanomaterials (Basel). 2018-12-19

[3]
Development of Piezoresistive Sensors Based on Graphene Nanoplatelets Screen-Printed on Woven and Knitted Fabrics: Optimisation of Active Layer Formulation and Transversal/Longitudinal Textile Direction.

Materials (Basel). 2022-7-26

[4]
Elucidation of Conduction Mechanism in Graphene Nanoplatelets (GNPs)/Cement Composite Using Dielectric Spectroscopy.

Materials (Basel). 2020-1-8

[5]
The piezoresistive effect in graphene-based polymeric composites.

Nanotechnology. 2013-10-22

[6]
Preparation and Properties of SBR Composites Containing Graphene Nanoplatelets Modified with Pyridinium Derivative.

Materials (Basel). 2020-11-27

[7]
Highly Sensitive Piezoresistive Graphene-Based Stretchable Composites for Sensing Applications.

ACS Appl Mater Interfaces. 2019-11-27

[8]
Electrospun Poly(ethylene--vinyl alcohol)/Graphene Nanoplatelets Composites of Interest in Intelligent Food Packaging Applications.

Nanomaterials (Basel). 2018-9-20

[9]
Effect of Graphene Nanoplatelets on the Structure, the Morphology, and the Dielectric Behavior of Low-Density Polyethylene Nanocomposites.

Materials (Basel). 2020-10-26

[10]
Doping Effect of Graphene Nanoplatelets on Electrical Insulation Properties of Polyethylene: From Macroscopic to Molecular Scale.

Materials (Basel). 2016-8-10

引用本文的文献

[1]
Comparison of Zinc Oxide Nanoparticle Integration into Non-Woven Fabrics Using Different Functionalisation Methods for Prospective Application as Active Facemasks.

Polymers (Basel). 2023-8-22

[2]
Gentamicin Sulfate Grafted Magnetic GO Nanohybrids with Excellent Antibacterial Properties and Recyclability.

Nanomaterials (Basel). 2023-4-20

[3]
Enhancement of Bonding and Mechanical Performance of Epoxy Asphalt Bond Coats with Graphene Nanoplatelets.

Polymers (Basel). 2023-1-12

[4]
Enhancement of Electromagnetic Wave Shielding Effectiveness by the Incorporation of Carbon Nanofibers-Carbon Microcoils Hybrid into Commercial Carbon Paste for Heating Films.

Molecules. 2023-1-15

[5]
Electrical Contact Resistance of Large-Area Graphene on Pre-Patterned Cu and Au Electrodes.

Nanomaterials (Basel). 2022-12-14

[6]
Effect of the Matrix Melt Flow Index and Fillers on Mechanical Properties of Polypropylene-Based Composites.

Materials (Basel). 2022-10-28

[7]
Development of Piezoresistive Sensors Based on Graphene Nanoplatelets Screen-Printed on Woven and Knitted Fabrics: Optimisation of Active Layer Formulation and Transversal/Longitudinal Textile Direction.

Materials (Basel). 2022-7-26

[8]
Joule-Heating Effect of Thin Films with Carbon-Based Nanomaterials.

Materials (Basel). 2022-6-18

[9]
Recent Trends in Protective Textiles against Biological Threats: A Focus on Biological Warfare Agents.

Polymers (Basel). 2022-4-14

[10]
Quasi-Static Multifunctional Characterization of 3D-Printed Carbon Fiber Composites for Compressive-Electrical Properties.

Polymers (Basel). 2022-1-14

本文引用的文献

[1]
Characterization of Electrical Heating Textile Coated by Graphene Nanoplatelets/PVDF-HFP Composite with Various High Graphene Nanoplatelet Contents.

Polymers (Basel). 2019-5-27

[2]
Preparation and Characterization of Poly(ether-block-amide)/Polyethylene Glycol Composite Films with Temperature-Dependent Permeation.

Polymers (Basel). 2018-2-24

[3]
Searching for Natural Conductive Fibrous Structures via a Green Sustainable Approach Based on Jute Fibers and Silver Nanoparticles.

Polymers (Basel). 2018-1-11

[4]
Multifunctional Flax Fibres Based on the Combined Effect of Silver and Zinc Oxide (Ag/ZnO) Nanostructures.

Nanomaterials (Basel). 2018-12-19

[5]
High-Performance Graphene-Based Natural Fiber Composites.

ACS Appl Mater Interfaces. 2018-9-28

[6]
Development of Graphene Nano-Platelet Based Counter Electrodes for Solar Cells.

Materials (Basel). 2015-9-7

[7]
Enhanced electrical conductivity and piezoresistive sensing in multi-wall carbon nanotubes/polydimethylsiloxane nanocomposites via the construction of a self-segregated structure.

Nanoscale. 2017-8-10

[8]
Porphyrin dye into biopolymeric chitosan films for localized photodynamic therapy of cancer.

Carbohydr Polym. 2016-5-19

[9]
Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring.

ACS Appl Mater Interfaces. 2015-3-25

[10]
Wearable electronics and smart textiles: a critical review.

Sensors (Basel). 2014-7-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索