文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

石墨烯纳米片增强环氧沥青粘结层的粘结性能和力学性能

Enhancement of Bonding and Mechanical Performance of Epoxy Asphalt Bond Coats with Graphene Nanoplatelets.

作者信息

Jing Fan, Wang Rui, Zhao Ruikang, Li Chenxuan, Cai Jun, Ding Guowei, Wang Qingjun, Xie Hongfeng

机构信息

MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.

Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.

出版信息

Polymers (Basel). 2023 Jan 12;15(2):412. doi: 10.3390/polym15020412.


DOI:10.3390/polym15020412
PMID:36679290
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9865374/
Abstract

Improving bonding and mechanical strengths is important for the application of bond coats used in the construction of steel deck bridges. Graphene nanoplatelets (GNPs) are attractive nanofillers for polymer modification because of their low cost, ultra-high aspect ratio, and extraordinary thermal and mechanical performance. In this paper, GNPs were used to reinforce the epoxy asphalt bond coat (EABC). The morphology, viscosity-time behavior, contact angle, dynamic mechanical properties, and mechanical and bonding strengths of GNP-reinforced EABCs were investigated using laser confocal microscopy, a Brookfield rotational viscometer, a contact angle meter, dynamic mechanical analysis, a universal test machine, and single-lap shear and pull-off adhesion tests. GNP dispersed non-uniformly in the asphalt phase of EABC. The viscosity of the neat EABC was lowered with the inclusion of GNPs and thus the allowable construction time was extended. The existence of GNPs enhances the hydrophobicity of the neat EABC. When adding more than 0.2% GNP, the storage modulus, crosslinking density and glass transition temperatures of both asphalt and epoxy of the neat EABC increased. The mechanical and bonding properties of the neat EABC were greatly enhanced with the incorporation of GNPs. Furthermore, the mechanical and bonding strengths of the modified EABCs increased with the GNP content. GNP-reinforced EABCs can be utilized in the pavement of long-span steel bridges with long durability.

摘要

提高粘结强度和机械强度对于钢桥面板桥梁建设中使用的粘结层的应用至关重要。石墨烯纳米片(GNPs)因其低成本、超高的纵横比以及卓越的热性能和机械性能,是聚合物改性中极具吸引力的纳米填料。本文中,GNPs被用于增强环氧沥青粘结层(EABC)。使用激光共聚焦显微镜、布鲁克菲尔德旋转粘度计、接触角测量仪、动态力学分析、万能试验机以及单搭接剪切和拉拔附着力试验,研究了GNP增强EABC的形态、粘度-时间行为、接触角、动态力学性能以及机械和粘结强度。GNP在EABC的沥青相中分散不均匀。加入GNPs后,纯EABC的粘度降低,从而延长了允许的施工时间。GNPs的存在增强了纯EABC的疏水性。当添加超过0.2%的GNP时,纯EABC的沥青和环氧树脂的储能模量、交联密度和玻璃化转变温度均升高。加入GNPs后,纯EABC的机械性能和粘结性能得到极大增强。此外,改性EABC的机械强度和粘结强度随GNP含量的增加而提高。GNP增强的EABC可用于具有长耐久性的大跨度钢桥路面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/babe563b5d0f/polymers-15-00412-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/0f150791d3ba/polymers-15-00412-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/0b7ad5e2c644/polymers-15-00412-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/446392f24965/polymers-15-00412-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/eb474e44cd3d/polymers-15-00412-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/bdb8c7110431/polymers-15-00412-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/10a090ff2aa2/polymers-15-00412-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/c6c28b395263/polymers-15-00412-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/63483d312a02/polymers-15-00412-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/3bc3da514aaf/polymers-15-00412-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/d110c7ce1d05/polymers-15-00412-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/60227e3b42d7/polymers-15-00412-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/4632b5d57ff9/polymers-15-00412-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/5d2b2cbca66a/polymers-15-00412-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/a877ffd3d615/polymers-15-00412-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/9542cd45b6c3/polymers-15-00412-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/3159c4b55e25/polymers-15-00412-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/da36be6a6f54/polymers-15-00412-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/62ff82c94ad8/polymers-15-00412-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/babe563b5d0f/polymers-15-00412-g019.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/0f150791d3ba/polymers-15-00412-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/0b7ad5e2c644/polymers-15-00412-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/446392f24965/polymers-15-00412-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/eb474e44cd3d/polymers-15-00412-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/bdb8c7110431/polymers-15-00412-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/10a090ff2aa2/polymers-15-00412-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/c6c28b395263/polymers-15-00412-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/63483d312a02/polymers-15-00412-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/3bc3da514aaf/polymers-15-00412-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/d110c7ce1d05/polymers-15-00412-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/60227e3b42d7/polymers-15-00412-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/4632b5d57ff9/polymers-15-00412-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/5d2b2cbca66a/polymers-15-00412-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/a877ffd3d615/polymers-15-00412-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/9542cd45b6c3/polymers-15-00412-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/3159c4b55e25/polymers-15-00412-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/da36be6a6f54/polymers-15-00412-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/62ff82c94ad8/polymers-15-00412-g018.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b7de/9865374/babe563b5d0f/polymers-15-00412-g019.jpg

相似文献

[1]
Enhancement of Bonding and Mechanical Performance of Epoxy Asphalt Bond Coats with Graphene Nanoplatelets.

Polymers (Basel). 2023-1-12

[2]
Graphene Oxide-Modified Epoxy Asphalt Bond Coats with Enhanced Bonding Properties.

Materials (Basel). 2022-10-2

[3]
Thermal and Mechanical Behavior of Hybrid Polymer Nanocomposite Reinforced with Graphene Nanoplatelets.

Materials (Basel). 2015-8-24

[4]
Waste Cooking Oil-Modified Epoxy Asphalt Rubber Binders with Improved Compatibility and Extended Allowable Construction Time.

Molecules. 2022-10-19

[5]
Epoxy/Graphene Nanoplatelet (GNP) Nanocomposites: An Experimental Study on Tensile, Compressive, and Thermal Properties.

Polymers (Basel). 2024-5-23

[6]
Comprehensive Enhancement in Thermomechanical Performance of Melt-Extruded PEEK Filaments by Graphene Incorporation.

Polymers (Basel). 2021-4-28

[7]
Mechanical Characteristics of Graphene Nanoplatelets-Modified Asphalt Mixes: A Comparison with Polymer- and Not-Modified Asphalt Mixes.

Materials (Basel). 2021-5-7

[8]
Temperature-Dependent Synergistic Effect of Multi-Walled Carbon Nanotubes and Graphene Nanoplatelets on the Tensile Quasi-Static and Fatigue Properties of Epoxy Nanocomposites.

Polymers (Basel). 2020-12-28

[9]
Laboratory Evaluation of Mechanical Properties of Modified Asphalt and Mixture Using Graphene Platelets (GnPs).

Materials (Basel). 2021-9-27

[10]
The Influence of Sonication Processing Conditions on Electrical and Mechanical Properties of Single and Hybrid Epoxy Nanocomposites Filled with Carbon Nanoparticles.

Polymers (Basel). 2021-11-26

引用本文的文献

[1]
Bio-Based Polyurethane Asphalt Binder with Continuous Polymer-Phase Structure: Critical Role of Isocyanate Index in Governing Thermomechanical Performance and Phase Morphology.

Molecules. 2025-6-4

[2]
Thermo-Mechanical Properties and Phase-Separated Morphology of Warm-Mix Epoxy Asphalt Binders with Different Epoxy Resin Concentrations.

Molecules. 2024-7-9

[3]
Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler.

Materials (Basel). 2024-7-15

[4]
Performance and Morphology of Waterborne Polyurethane Asphalt in the Vicinity of Phase Inversion.

Materials (Basel). 2024-7-8

[5]
Enhancing Railway Track Stabilization with Epoxy Resin and Crumb Rubber Powder-Modified Cement Asphalt Mortar.

Polymers (Basel). 2023-11-19

[6]
Feasibility of Sustainable Asphalt Concrete Materials Utilizing Waste Plastic Aggregate, Epoxy Resin, and Magnesium-Based Additive.

Polymers (Basel). 2023-8-3

[7]
Properties and Characterization Techniques of Graphene Modified Asphalt Binders.

Nanomaterials (Basel). 2023-3-6

本文引用的文献

[1]
Waste Cooking Oil-Modified Epoxy Asphalt Rubber Binders with Improved Compatibility and Extended Allowable Construction Time.

Molecules. 2022-10-19

[2]
Influence of the Epoxy/Acid Stoichiometry on the Cure Behavior and Mechanical Properties of Epoxy Vitrimers.

Molecules. 2022-9-26

[3]
Graphene Oxide-Modified Epoxy Asphalt Bond Coats with Enhanced Bonding Properties.

Materials (Basel). 2022-10-2

[4]
Reinforced Epoxy Composites Modified with Functionalized Graphene Oxide.

Polymers (Basel). 2022-1-16

[5]
Development and Laboratory Evaluation of a Cold Mix High-Early-Strength Epoxy Asphalt Concrete for Steel Bridge Deck Pavements.

Materials (Basel). 2021-8-13

[6]
Effects of Graphene Nanoplatelets on Mechanical and Fire Performance of Flax Polypropylene Composites with Intumescent Flame Retardant.

Molecules. 2021-7-5

[7]
Mechanical Characteristics of Graphene Nanoplatelets-Modified Asphalt Mixes: A Comparison with Polymer- and Not-Modified Asphalt Mixes.

Materials (Basel). 2021-5-7

[8]
Application of Atomic Force (AFM), Environmental Scanning Electron (ESEM) and Confocal Laser Scanning Microscopy (CLSM) in bitumen: A review of the ageing effect.

Micron. 2021-8

[9]
The Potential of Graphene Nanoplatelets in the Development of Smart and Multifunctional Ecocomposites.

Polymers (Basel). 2020-9-24

[10]
Short- and Long-Term Epoxy Modification of Bitumen: Modification Kinetics, Rheological Properties, and Microstructure.

Polymers (Basel). 2020-2-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索