School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China.
Beijing Institute of Pharmacology and Toxicology, Beijing, China.
Stem Cells Dev. 2020 Nov 15;29(22):1444-1456. doi: 10.1089/scd.2020.0103. Epub 2020 Oct 29.
The cell-type-specific response of neural cells to oxidative stress, a crucial mechanism for accelerating aging and cognitive dysfunction in Alzheimer's disease (AD), is still far from understood. Here, we employed human-induced pluripotent stem cells (hiPSCs)-derived neural stem cells (hiPSC-NSCs), neurons (hiPSC-Neurons), and microglia-like cells (hiPSC-MGLs) from sporadic AD (sAD) patients, age-matched cognitive normal controls (CNCs), and young subjects to observe human neural cell-type response to HO stimulation. Without HO exposure, reactive oxygen species (ROS) cannot be detected in hiPSC-NSCs from all three groups, but the viability of hiPSC-NSCs from AD patients was significantly lower than those of CNCs and young subjects. There were no significant differences in ROS, viabilities, neurite length, and neurite branch points in hiPSC-Neurons among three groups. No significant differences in viabilities, phagocytosis, and secretion of cytokines were observed in hiPSC-MGLs among three groups, but higher ROS levels in sAD hiPSC-MGLs. Under HO exposure, the viability, neurite length, and neurite branch points of hiPSC-Neurons from AD patients reduced more significantly accompanied by more ROS release. HO exposure caused hiPSC-MGLs from AD patients to release more ROS, cytokines, and stronger phagocytosis. Nevertheless, HO exposure had no effect on viability of hiPSC-NSCs. Our results showed hiPSC-Neurons and hiPSC-MGLs were more sensitive to HO than hiPSC-NSCs, which indicated the different response styles of hiPSC-NSCs, hiPSC-Neurons, and hiPSC-MGLs to oxidative stress. HiPSC-derived neural cells from AD patients suffered more severe injury from HO than those of CNCs and young subjects, indicating that the vulnerability to oxidative stress of AD patients can be recapitulated in hiPSCs.
神经细胞对氧化应激的细胞类型特异性反应是加速阿尔茨海默病(AD)衰老和认知功能障碍的关键机制,但目前仍远未被理解。在这里,我们使用来自散发性 AD(sAD)患者、年龄匹配的认知正常对照(CNC)和年轻供体的人诱导多能干细胞(hiPSC)衍生的神经干细胞(hiPSC-NSC)、神经元(hiPSC-Neurons)和小胶质样细胞(hiPSC-MGL)来观察人类神经细胞类型对 HO 刺激的反应。在没有 HO 暴露的情况下,所有三组的 hiPSC-NSC 中均无法检测到活性氧(ROS),但 AD 患者的 hiPSC-NSC 活力明显低于 CNC 和年轻供体。三组 hiPSC-Neurons 中的 ROS、活力、神经突长度和神经突分支点均无显著差异。三组 hiPSC-MGLs 的活力、吞噬作用和细胞因子分泌均无显著差异,但 sAD hiPSC-MGLs 的 ROS 水平较高。在 HO 暴露下,AD 患者的 hiPSC-Neurons 的活力、神经突长度和神经突分支点减少更为明显,同时伴随着更多的 ROS 释放。HO 暴露导致 AD 患者的 hiPSC-MGL 释放更多的 ROS、细胞因子和更强的吞噬作用。然而,HO 暴露对 hiPSC-NSC 的活力没有影响。我们的结果表明,与 hiPSC-NSC 相比,hiPSC-Neurons 和 hiPSC-MGL 对 HO 更敏感,这表明 hiPSC-NSC、hiPSC-Neurons 和 hiPSC-MGL 对氧化应激的反应方式不同。与 CNC 和年轻供体相比,来自 AD 患者的 hiPSC 衍生的神经细胞在 HO 作用下遭受更严重的损伤,表明 AD 患者对氧化应激的易感性可以在 hiPSC 中得到再现。