Suppr超能文献

基于免疫的生物标志物及阿尔茨海默病深度学习模型的开发与验证

Development and validation of immune-based biomarkers and deep learning models for Alzheimer's disease.

作者信息

He Yijie, Cong Lin, He Qinfei, Feng Nianping, Wu Yun

机构信息

Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.

出版信息

Front Genet. 2022 Aug 22;13:968598. doi: 10.3389/fgene.2022.968598. eCollection 2022.

Abstract

Alzheimer's disease (AD) is the most common form of dementia in old age and poses a severe threat to the health and life of the elderly. However, traditional diagnostic methods and the ATN diagnostic framework have limitations in clinical practice. Developing novel biomarkers and diagnostic models is necessary to complement existing diagnostic procedures. The AD expression profile dataset GSE63060 was downloaded from the NCBI GEO public database for preprocessing. AD-related differentially expressed genes were screened using a weighted co-expression network and differential expression analysis, and functional enrichment analysis was performed. Subsequently, we screened hub genes by random forest, analyzed the correlation between hub genes and immune cells using ssGSEA, and finally built an AD diagnostic model using an artificial neural network and validated it. Based on the random forest algorithm, we screened a total of seven hub genes from AD-related DEGs, based on which we confirmed that hub genes play an essential role in the immune microenvironment and successfully established a novel diagnostic model for AD using artificial neural networks, and validated its effectiveness in the publicly available datasets GSE63060 and GSE97760. Our study establishes a reliable model for screening and diagnosing AD that provides a theoretical basis for adding diagnostic biomarkers for the AD gene.

摘要

阿尔茨海默病(AD)是老年期最常见的痴呆形式,对老年人的健康和生活构成严重威胁。然而,传统诊断方法和ATN诊断框架在临床实践中存在局限性。开发新型生物标志物和诊断模型对于补充现有诊断程序很有必要。从NCBI GEO公共数据库下载AD表达谱数据集GSE63060进行预处理。使用加权共表达网络和差异表达分析筛选与AD相关的差异表达基因,并进行功能富集分析。随后,我们通过随机森林筛选枢纽基因,使用ssGSEA分析枢纽基因与免疫细胞之间的相关性,最后使用人工神经网络构建AD诊断模型并进行验证。基于随机森林算法,我们从与AD相关的差异表达基因中总共筛选出7个枢纽基因,在此基础上我们证实枢纽基因在免疫微环境中起重要作用,并成功使用人工神经网络建立了一种新型的AD诊断模型,并在公开可用数据集GSE63060和GSE97760中验证了其有效性。我们的研究建立了一个可靠的AD筛选和诊断模型,为添加AD基因诊断生物标志物提供了理论依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f8c9/9441688/a078bbea7b50/fgene-13-968598-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验