Department of Obstetrics, Gynecology and Reproduction, Hospital Universitari Dexeus, Dexeus Mujer, Barcelona, Spain.
Hospital Clinic de Barcelona, Institut Clínic de Ginecologia Obstetrícia i Neonatologia, Barcelona, Spain.
BMC Pregnancy Childbirth. 2020 Sep 25;20(1):563. doi: 10.1186/s12884-020-03167-5.
Strategies to improve prenatal detection of small-for-gestational age (SGA) neonates are necessary because its association with poorer perinatal outcome. This study evaluated, in pregnancies with first trimester high risk of early preeclampsia, the performance of a third trimester screening for SGA combining biophysical and biochemical markers.
This is a prospective longitudinal study on 378 singleton pregnancies identified at high risk of early preeclampsia according to a first trimester multiparametric algorithm with the cutoff corresponding to 15% false positive rate. This cohort included 50 cases that delivered SGA neonates with birthweight < 10th centile (13.2%) and 328 cases with normal birthweight (86.8%). At 27-30 weeks' gestation, maternal weight, blood pressure, estimated fetal weight, mean uterine artery pulsatility index and maternal biochemical markers (placental growth factor and soluble FMS-Like Tyrosine Kinase-1) were assessed. Different predictive models were created to evaluate their performance to predict SGA neonates.
For a 15% FPR, a model that combines maternal characteristics, estimated fetal weight, mean uterine artery pulsatility index and placental growth factor achieved a detection rate (DR) of 56% with a negative predictive value of 92.2%. The area under receiver operating characteristic curve (AUC) was 0.79 (95% confidence interval (CI), 0.72-0.86). The DR of a model including maternal characteristics, estimated fetal weight and mean uterine artery pulsatility index was 54% (AUC, 0.77 (95% CI, 0.70-0.84)). The DR of a model that includes maternal characteristics and placental growth factor achieved a similar performance (DR 56%, AUC 0.75, 95% CI (0.67-0.83)).
The performance of screening for SGA neonates at early third trimester combining biophysical and biochemical markers in a high-risk population is poor. However, a high negative predictive value could help in reducing maternal anxiety, avoid iatrogenic interventions and propose a specific plan for higher risk patients.
需要制定提高小胎龄儿(SGA)产前检出率的策略,因为其与围产期不良结局相关。本研究评估了在具有早期子痫前期高危风险的初产妇中,结合生物物理和生化标志物的晚期三分之一孕期筛查 SGA 的表现。
这是一项前瞻性纵向研究,纳入了根据初产妇三参数算法确定的具有早期子痫前期高危风险的 378 例单胎妊娠,该算法的截断值对应于 15%的假阳性率。该队列包括 50 例出生体重<第 10 百分位数(13.2%)的 SGA 新生儿和 328 例出生体重正常的新生儿。在 27-30 孕周时,评估孕妇体重、血压、估计胎儿体重、子宫动脉平均搏动指数和孕妇生化标志物(胎盘生长因子和可溶性 FMS 样酪氨酸激酶-1)。创建了不同的预测模型来评估其预测 SGA 新生儿的性能。
对于 15%的假阳性率,结合母亲特征、估计胎儿体重、子宫动脉平均搏动指数和胎盘生长因子的模型的检出率(DR)为 56%,阴性预测值为 92.2%。接受者操作特征曲线下面积(AUC)为 0.79(95%置信区间,0.72-0.86)。包含母亲特征、估计胎儿体重和子宫动脉平均搏动指数的模型的 DR 为 54%(AUC,0.77(95%置信区间,0.70-0.84))。包含母亲特征和胎盘生长因子的模型的 DR 表现相似(DR 56%,AUC 0.75,95%置信区间(0.67-0.83))。
在高危人群中,结合生物物理和生化标志物的早期三分之一孕期筛查 SGA 新生儿的表现不佳。然而,高阴性预测值有助于减少产妇焦虑,避免医源性干预,并为高风险患者提出具体计划。