Suppr超能文献

将语言置于综合理解系统中:迈向神经语言模型达到人类水平性能的下一步。

Placing language in an integrated understanding system: Next steps toward human-level performance in neural language models.

机构信息

Department of Psychology, Stanford University, Stanford, CA 94305;

DeepMind, London N1C 4AG, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):25966-25974. doi: 10.1073/pnas.1910416117. Epub 2020 Sep 28.

Abstract

Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. In humans, these abilities emerge gradually from experience and depend on domain-general principles of biological neural networks: connection-based learning, distributed representation, and context-sensitive, mutual constraint satisfaction-based processing. Current artificial language processing systems rely on the same domain general principles, embodied in artificial neural networks. Indeed, recent progress in this field depends on query-based attention, which extends the ability of these systems to exploit context and has contributed to remarkable breakthroughs. Nevertheless, most current models focus exclusively on language-internal tasks, limiting their ability to perform tasks that depend on understanding situations. These systems also lack memory for the contents of prior situations outside of a fixed contextual span. We describe the organization of the brain's distributed understanding system, which includes a fast learning system that addresses the memory problem. We sketch a framework for future models of understanding drawing equally on cognitive neuroscience and artificial intelligence and exploiting query-based attention. We highlight relevant current directions and consider further developments needed to fully capture human-level language understanding in a computational system.

摘要

语言对于人类智能至关重要,但它究竟扮演了什么角色呢?我们将语言视为理解和交流情境的系统的一部分。在人类中,这些能力是从经验中逐渐发展而来的,并且依赖于生物神经网络的一般原则:基于连接的学习、分布式表示以及上下文敏感、相互约束满足的处理。当前的人工语言处理系统依赖于相同的一般原则,这些原则体现在人工神经网络中。事实上,该领域的最新进展依赖于基于查询的注意力,这扩展了这些系统利用上下文的能力,并促成了显著的突破。然而,大多数当前的模型仅专注于语言内部的任务,限制了它们执行依赖于理解情境的任务的能力。这些系统也缺乏对固定上下文跨度之外的先前情境内容的记忆。我们描述了大脑分布式理解系统的组织,该系统包括一个快速学习系统,用于解决记忆问题。我们勾勒出一个未来理解模型的框架,该框架同样借鉴了认知神经科学和人工智能,并利用基于查询的注意力。我们强调了相关的当前方向,并考虑了进一步的发展,以在计算系统中充分捕捉人类水平的语言理解。

相似文献

6
How does hemispheric specialization contribute to human-defining cognition?大脑两半球特化如何促进人类特有的认知?
Neuron. 2021 Jul 7;109(13):2075-2090. doi: 10.1016/j.neuron.2021.04.024. Epub 2021 May 17.
7
Human intelligence and brain networks.人类智力与脑网络。
Dialogues Clin Neurosci. 2010;12(4):489-501. doi: 10.31887/DCNS.2010.12.4/rcolom.
8
Linguistic generalization and compositionality in modern artificial neural networks.现代人工神经网络中的语言泛化和组合性。
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 3;375(1791):20190307. doi: 10.1098/rstb.2019.0307. Epub 2019 Dec 16.
9
Embodied meaning in a neural theory of language.语言神经理论中的具身意义。
Brain Lang. 2004 May;89(2):385-92. doi: 10.1016/S0093-934X(03)00355-9.

引用本文的文献

2
Comparison of Large Language Model with Aphasia.大语言模型与失语症的比较。
Adv Sci (Weinh). 2025 Jun;12(22):e2414016. doi: 10.1002/advs.202414016. Epub 2025 May 14.
8
Emergent analogical reasoning in large language models.大语言模型中的紧急类比推理。
Nat Hum Behav. 2023 Sep;7(9):1526-1541. doi: 10.1038/s41562-023-01659-w. Epub 2023 Jul 31.

本文引用的文献

1
Emergent linguistic structure in artificial neural networks trained by self-supervision.自我监督训练的人工神经网络中的紧急语言结构。
Proc Natl Acad Sci U S A. 2020 Dec 1;117(48):30046-30054. doi: 10.1073/pnas.1907367117. Epub 2020 Jun 3.
10
Building machines that learn and think like people.建造像人一样学习和思考的机器。
Behav Brain Sci. 2017 Jan;40:e253. doi: 10.1017/S0140525X16001837. Epub 2016 Nov 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验