Department of Psychology, Stanford University, Stanford, CA 94305;
DeepMind, London N1C 4AG, United Kingdom.
Proc Natl Acad Sci U S A. 2020 Oct 20;117(42):25966-25974. doi: 10.1073/pnas.1910416117. Epub 2020 Sep 28.
Language is crucial for human intelligence, but what exactly is its role? We take language to be a part of a system for understanding and communicating about situations. In humans, these abilities emerge gradually from experience and depend on domain-general principles of biological neural networks: connection-based learning, distributed representation, and context-sensitive, mutual constraint satisfaction-based processing. Current artificial language processing systems rely on the same domain general principles, embodied in artificial neural networks. Indeed, recent progress in this field depends on query-based attention, which extends the ability of these systems to exploit context and has contributed to remarkable breakthroughs. Nevertheless, most current models focus exclusively on language-internal tasks, limiting their ability to perform tasks that depend on understanding situations. These systems also lack memory for the contents of prior situations outside of a fixed contextual span. We describe the organization of the brain's distributed understanding system, which includes a fast learning system that addresses the memory problem. We sketch a framework for future models of understanding drawing equally on cognitive neuroscience and artificial intelligence and exploiting query-based attention. We highlight relevant current directions and consider further developments needed to fully capture human-level language understanding in a computational system.
语言对于人类智能至关重要,但它究竟扮演了什么角色呢?我们将语言视为理解和交流情境的系统的一部分。在人类中,这些能力是从经验中逐渐发展而来的,并且依赖于生物神经网络的一般原则:基于连接的学习、分布式表示以及上下文敏感、相互约束满足的处理。当前的人工语言处理系统依赖于相同的一般原则,这些原则体现在人工神经网络中。事实上,该领域的最新进展依赖于基于查询的注意力,这扩展了这些系统利用上下文的能力,并促成了显著的突破。然而,大多数当前的模型仅专注于语言内部的任务,限制了它们执行依赖于理解情境的任务的能力。这些系统也缺乏对固定上下文跨度之外的先前情境内容的记忆。我们描述了大脑分布式理解系统的组织,该系统包括一个快速学习系统,用于解决记忆问题。我们勾勒出一个未来理解模型的框架,该框架同样借鉴了认知神经科学和人工智能,并利用基于查询的注意力。我们强调了相关的当前方向,并考虑了进一步的发展,以在计算系统中充分捕捉人类水平的语言理解。