Suppr超能文献

小儿肾移植移植物失功的动态预测模型。

Dynamic prediction models for graft failure in paediatric kidney transplantation.

机构信息

INSERM, Bordeaux Population Health Research Center, University of Bordeaux, UMR1219, Bordeaux, France.

Agence de la Biomédecine, REIN Registry, La Plaine-Saint Denis, France.

出版信息

Nephrol Dial Transplant. 2021 Apr 26;36(5):927-935. doi: 10.1093/ndt/gfaa180.

Abstract

BACKGROUND

Several models have been proposed to predict kidney graft failure in adult recipients but none in younger recipients. Our objective was to propose a dynamic prediction model for graft failure in young kidney transplant recipients.

METHODS

We included 793 kidney transplant recipients waitlisted before the age of 18 years who received a first kidney transplantation before the age of 21 years in France in 2002-13 and survived >90 days with a functioning graft. We used a Cox model including baseline predictors only (sex, age at transplant, primary kidney disease, dialysis duration, donor type and age, human leucocyte antigen matching, cytomegalovirus serostatus, cold ischaemia time and delayed graft function) and two joint models also accounting for post-transplant estimated glomerular filtration rate (eGFR) trajectory. Predictive performances were evaluated using a cross-validated area under the curve (AUC) and R2 curves.

RESULTS

When predicting the risk of graft failure from any time within the first 7 years after paediatric kidney transplantation, the predictions for the following 3 or 5 years were accurate and much better with the joint models than with the Cox model (AUC ranged from 0.83 to 0.91 for the joint models versus 0.56 to 0.64 for the Cox model).

CONCLUSION

Accounting for post-transplant eGFR trajectory strongly increased the accuracy of graft failure prediction in young kidney transplant recipients.

摘要

背景

已经提出了几种预测成人受者肾移植失败的模型,但没有一种适用于年轻受者。我们的目的是提出一种用于预测年轻肾移植受者移植物失败的动态预测模型。

方法

我们纳入了 2002 年至 2013 年在法国接受首次肾移植时年龄小于 21 岁且等待移植时年龄小于 18 岁的 793 例肾移植受者,且移植后 90 天以上肾功能正常。我们使用 Cox 模型纳入了基线预测因子(性别、移植时年龄、原发病、透析时间、供者类型和年龄、人类白细胞抗原匹配、巨细胞病毒血清状态、冷缺血时间和延迟移植物功能),以及两个联合模型,也考虑了移植后估算肾小球滤过率(eGFR)轨迹。使用交叉验证曲线下面积(AUC)和 R2 曲线评估预测性能。

结果

在儿童肾移植后 7 年内的任何时间预测移植物失败风险时,联合模型预测未来 3 年或 5 年的结果更准确,明显优于 Cox 模型(联合模型的 AUC 范围为 0.83 至 0.91,而 Cox 模型为 0.56 至 0.64)。

结论

考虑移植后 eGFR 轨迹大大提高了年轻肾移植受者移植物失败预测的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验