Paris Translational Research Centre for Organ Transplantation, INSERM, PARCC, Université de Paris, Paris, France.
Paris Translational Research Centre for Organ Transplantation, INSERM, PARCC, Université de Paris, Paris, France; Kidney Transplant Department, Necker Hospital, Assistance Publique - Hôpitaux de Paris, Paris, France.
Lancet Digit Health. 2021 Dec;3(12):e795-e805. doi: 10.1016/S2589-7500(21)00209-0. Epub 2021 Oct 28.
Kidney allograft failure is a common cause of end-stage renal disease. We aimed to develop a dynamic artificial intelligence approach to enhance risk stratification for kidney transplant recipients by generating continuously refined predictions of survival using updates of clinical data.
In this observational study, we used data from adult recipients of kidney transplants from 18 academic transplant centres in Europe, the USA, and South America, and a cohort of patients from six randomised controlled trials. The development cohort comprised patients from four centres in France, with all other patients included in external validation cohorts. To build deeply phenotyped cohorts of transplant recipients, the following data were collected in the development cohort: clinical, histological, immunological variables, and repeated measurements of estimated glomerular filtration rate (eGFR) and proteinuria (measured using the proteinuria to creatininuria ratio). To develop a dynamic prediction system based on these clinical assessments and repeated measurements, we used a Bayesian joint models-an artificial intelligence approach. The prediction performances of the model were assessed via discrimination, through calculation of the area under the receiver operator curve (AUC), and calibration. This study is registered with ClinicalTrials.gov, NCT04258891.
13 608 patients were included (3774 in the development cohort and 9834 in the external validation cohorts) and contributed 89 328 patient-years of data, and 416 510 eGFR and proteinuria measurements. Bayesian joint models showed that recipient immunological profile, allograft interstitial fibrosis and tubular atrophy, allograft inflammation, and repeated measurements of eGFR and proteinuria were independent risk factors for allograft survival. The final model showed accurate calibration and very high discrimination in the development cohort (overall dynamic AUC 0·857 [95% CI 0·847-0·866]) with a persistent improvement in AUCs for each new repeated measurement (from 0·780 [0·768-0·794] to 0·926 [0·917-0·932]; p<0·0001). The predictive performance was confirmed in the external validation cohorts from Europe (overall AUC 0·845 [0·837-0·854]), the USA (overall AUC 0·820 [0·808-0·831]), South America (overall AUC 0·868 [0·856-0·880]), and the cohort of patients from randomised controlled trials (overall AUC 0·857 [0·840-0·875]).
Because of its dynamic design, this model can be continuously updated and holds value as a bedside tool that could refine the prognostic judgements of clinicians in everyday practice, hence enhancing precision medicine in the transplant setting.
MSD Avenir, French National Institute for Health and Medical Research, and Bettencourt Schueller Foundation.
肾移植失败是终末期肾病的常见原因。我们旨在通过使用临床数据的更新来生成不断改进的生存预测,从而开发一种动态人工智能方法来增强肾移植受者的风险分层。
在这项观察性研究中,我们使用了来自欧洲、美国和南美洲 18 个学术移植中心的成年肾移植受者的数据,以及来自六个随机对照试验的患者队列。发展队列包括来自法国四个中心的患者,所有其他患者都包含在外部验证队列中。为了构建经过深度表型分析的移植受者队列,我们在发展队列中收集了以下数据:临床、组织学、免疫学变量,以及估算肾小球滤过率(eGFR)和蛋白尿的重复测量(使用蛋白尿与肌酐尿比值进行测量)。为了基于这些临床评估和重复测量来开发动态预测系统,我们使用了贝叶斯联合模型-一种人工智能方法。通过计算接收者操作特征曲线(AUC)下的面积来评估模型的预测性能(AUC),并进行校准。本研究在 ClinicalTrials.gov 注册,NCT04258891。
共纳入 13608 名患者(发展队列 3774 名,外部验证队列 9834 名),共提供了 89328 名患者年的数据,以及 416510 次 eGFR 和蛋白尿测量值。贝叶斯联合模型显示,受者免疫状况、同种异体间质纤维化和肾小管萎缩、同种异体炎症以及 eGFR 和蛋白尿的重复测量是同种异体移植物存活的独立危险因素。该最终模型在发展队列中表现出准确的校准和非常高的区分度(整体动态 AUC 为 0.857[0.847-0.866]),每个新的重复测量值都有持续提高的 AUC(从 0.780[0.768-0.794]到 0.926[0.917-0.932];p<0.0001)。该预测性能在欧洲(整体 AUC 0.845[0.837-0.854])、美国(整体 AUC 0.820[0.808-0.831])、南美洲(整体 AUC 0.868[0.856-0.880])以及随机对照试验患者队列(整体 AUC 0.857[0.840-0.875])的外部验证队列中得到了证实。
由于其动态设计,该模型可以不断更新,作为床边工具具有价值,可以改进临床医生在日常实践中的预后判断,从而提高移植环境中的精准医学水平。
MSD Avenir、法国国家健康与医学研究院和 Bettencourt Schueller 基金会。