Suppr超能文献

通过非马尔可夫“微箱”分析从加权系综模拟中加速估计长时间尺度动力学

Accelerated Estimation of Long-Timescale Kinetics from Weighted Ensemble Simulation via Non-Markovian "Microbin" Analysis.

作者信息

Copperman Jeremy, Zuckerman Daniel M

机构信息

Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97239, United States.

出版信息

J Chem Theory Comput. 2020 Nov 10;16(11):6763-6775. doi: 10.1021/acs.jctc.0c00273. Epub 2020 Oct 13.

Abstract

The weighted ensemble (WE) simulation strategy provides unbiased sampling of nonequilibrium processes, such as molecular folding or binding, but the extraction of rate constants relies on characterizing steady-state behavior. Unfortunately, WE simulations of sufficiently complex systems will not relax to steady state on observed simulation times. Here, we show that a postsimulation clustering of molecular configurations into "microbins" using methods developed in the Markov State Model (MSM) community can yield unbiased kinetics from WE data before steady-state convergence of the WE simulation itself. Because WE trajectories are directional and not equilibrium distributed, the history-augmented MSM (haMSM) formulation can be used, which yields the mean first-passage time (MFPT) without bias for arbitrarily small lag times. Accurate kinetics can be obtained while bypassing the often prohibitive convergence requirements of the nonequilibrium weighted ensemble. We validate the method in a simple diffusive process on a two-dimensional (2D) random energy landscape and then analyze atomistic protein folding simulations using WE molecular dynamics. We report significant progress toward the unbiased estimation of protein folding times and pathways, though key challenges remain.

摘要

加权系综(WE)模拟策略提供了对非平衡过程的无偏采样,例如分子折叠或结合,但速率常数的提取依赖于对稳态行为的表征。不幸的是,对于足够复杂的系统,WE模拟在观测到的模拟时间内不会弛豫到稳态。在此,我们表明,使用马尔可夫状态模型(MSM)领域开发的方法,在模拟后将分子构型聚类为“微仓”,可以在WE模拟自身达到稳态收敛之前,从WE数据中得出无偏动力学。由于WE轨迹是有方向性的且不是平衡分布的,因此可以使用历史增强MSM(haMSM)公式,该公式对于任意小的滞后时间都能无偏地得出平均首次通过时间(MFPT)。在绕过非平衡加权系综通常令人望而却步的收敛要求的同时,可以获得准确的动力学。我们在二维(2D)随机能量景观上的简单扩散过程中验证了该方法,然后使用WE分子动力学分析了原子尺度的蛋白质折叠模拟。我们报告了在无偏估计蛋白质折叠时间和途径方面取得的重大进展,尽管关键挑战仍然存在。

相似文献

9
Weighted Ensemble Simulation: Review of Methodology, Applications, and Software.加权集成模拟:方法、应用及软件综述
Annu Rev Biophys. 2017 May 22;46:43-57. doi: 10.1146/annurev-biophys-070816-033834. Epub 2017 Mar 1.

引用本文的文献

4
WEDAP: A Python Package for Streamlined Plotting of Molecular Simulation Data.WEDAP:用于简化分子模拟数据绘图的 Python 包。
J Chem Inf Model. 2024 Aug 12;64(15):5749-5755. doi: 10.1021/acs.jcim.4c00867. Epub 2024 Jul 16.
7
How Robust Is the Ligand Binding Transition State?配体结合过渡态有多稳定?
J Am Chem Soc. 2023 Nov 22;145(46):25318-25331. doi: 10.1021/jacs.3c08940. Epub 2023 Nov 9.

本文引用的文献

1
OPTIMIZING WEIGHTED ENSEMBLE SAMPLING OF STEADY STATES.优化稳态的加权集成采样
Multiscale Model Simul. 2020;18(2):646-673. doi: 10.1137/18m1212100. Epub 2020 May 6.
3
Variational selection of features for molecular kinetics.分子动力学特征的变分选择
J Chem Phys. 2019 May 21;150(19):194108. doi: 10.1063/1.5083040.
6
Computational Estimation of Microsecond to Second Atomistic Folding Times.微秒到秒尺度的原子折叠时间的计算估计。
J Am Chem Soc. 2019 Apr 24;141(16):6519-6526. doi: 10.1021/jacs.8b10735. Epub 2019 Apr 12.
8
Mapping the Ligand Binding Landscape.配体结合景观的绘制。
Biophys J. 2018 Nov 6;115(9):1707-1719. doi: 10.1016/j.bpj.2018.09.021. Epub 2018 Sep 29.
10
Rare-event sampling of epigenetic landscapes and phenotype transitions.表观遗传景观和表型转变的稀有事件采样。
PLoS Comput Biol. 2018 Aug 3;14(8):e1006336. doi: 10.1371/journal.pcbi.1006336. eCollection 2018 Aug.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验