Copperman Jeremy, Zuckerman Daniel M
Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon 97239, United States.
J Chem Theory Comput. 2020 Nov 10;16(11):6763-6775. doi: 10.1021/acs.jctc.0c00273. Epub 2020 Oct 13.
The weighted ensemble (WE) simulation strategy provides unbiased sampling of nonequilibrium processes, such as molecular folding or binding, but the extraction of rate constants relies on characterizing steady-state behavior. Unfortunately, WE simulations of sufficiently complex systems will not relax to steady state on observed simulation times. Here, we show that a postsimulation clustering of molecular configurations into "microbins" using methods developed in the Markov State Model (MSM) community can yield unbiased kinetics from WE data before steady-state convergence of the WE simulation itself. Because WE trajectories are directional and not equilibrium distributed, the history-augmented MSM (haMSM) formulation can be used, which yields the mean first-passage time (MFPT) without bias for arbitrarily small lag times. Accurate kinetics can be obtained while bypassing the often prohibitive convergence requirements of the nonequilibrium weighted ensemble. We validate the method in a simple diffusive process on a two-dimensional (2D) random energy landscape and then analyze atomistic protein folding simulations using WE molecular dynamics. We report significant progress toward the unbiased estimation of protein folding times and pathways, though key challenges remain.
加权系综(WE)模拟策略提供了对非平衡过程的无偏采样,例如分子折叠或结合,但速率常数的提取依赖于对稳态行为的表征。不幸的是,对于足够复杂的系统,WE模拟在观测到的模拟时间内不会弛豫到稳态。在此,我们表明,使用马尔可夫状态模型(MSM)领域开发的方法,在模拟后将分子构型聚类为“微仓”,可以在WE模拟自身达到稳态收敛之前,从WE数据中得出无偏动力学。由于WE轨迹是有方向性的且不是平衡分布的,因此可以使用历史增强MSM(haMSM)公式,该公式对于任意小的滞后时间都能无偏地得出平均首次通过时间(MFPT)。在绕过非平衡加权系综通常令人望而却步的收敛要求的同时,可以获得准确的动力学。我们在二维(2D)随机能量景观上的简单扩散过程中验证了该方法,然后使用WE分子动力学分析了原子尺度的蛋白质折叠模拟。我们报告了在无偏估计蛋白质折叠时间和途径方面取得的重大进展,尽管关键挑战仍然存在。