Suppr超能文献

基于网络的健康社区中信息交流和社会支持模式的研究:指数随机图模型。

Examining Patterns of Information Exchange and Social Support in a Web-Based Health Community: Exponential Random Graph Models.

机构信息

East China University of Science and Technology, Shanghai, China.

University of Massachusetts Boston, Boston, MA, United States.

出版信息

J Med Internet Res. 2020 Sep 29;22(9):e18062. doi: 10.2196/18062.

Abstract

BACKGROUND

Although an increasing number of studies have attempted to understand how people interact with others in web-based health communities, studies focusing on understanding individuals' patterns of information exchange and social support in web-based health communities are still limited. In this paper, we discuss how patients' social interactions develop into social networks based on a network exchange framework and empirically validate the framework in web-based health care community contexts.

OBJECTIVE

This study aims to explore various patterns of information exchange and social support in web-based health care communities and identify factors that affect such patterns.

METHODS

Using social network analysis and text mining techniques, we empirically validated a network exchange framework on a 10-year data set collected from a popular web-based health community. A reply network was extracted from the data set, and exponential random graph models were used to discover patterns of information exchange and social support from the network.

RESULTS

Results showed that reciprocated information exchange was common in web-based health communities. The homophily effect existed in general conversations but was weakened when exchanging knowledge. New members in web-based health communities tended to receive more support. Furthermore, polarized sentiment increases the chances of receiving replies, and optimistic users play an important role in providing social support to the entire community.

CONCLUSIONS

This study complements the literature on network exchange theories and contributes to a better understanding of social exchange patterns in the web-based health care context. Practically, this study can help web-based patients obtain information and social support more effectively.

摘要

背景

尽管越来越多的研究试图了解人们如何在基于网络的健康社区中与他人互动,但专注于理解个体在基于网络的健康社区中信息交流和社会支持模式的研究仍然有限。在本文中,我们根据网络交换框架讨论了患者的社交互动如何发展为社交网络,并在基于网络的医疗保健社区环境中对该框架进行了实证验证。

目的

本研究旨在探索基于网络的医疗保健社区中各种信息交流和社会支持模式,并确定影响这些模式的因素。

方法

使用社会网络分析和文本挖掘技术,我们对从一个流行的基于网络的健康社区收集的 10 年数据集进行了网络交换框架的实证验证。从数据集中提取了回复网络,并使用指数随机图模型从网络中发现信息交流和社会支持模式。

结果

结果表明,基于网络的健康社区中互惠的信息交流很常见。同质性效应在一般对话中存在,但在知识交流中会减弱。基于网络的健康社区中的新成员往往会获得更多的支持。此外,两极化情绪会增加收到回复的机会,乐观的用户在为整个社区提供社会支持方面发挥着重要作用。

结论

本研究补充了网络交换理论的文献,并有助于更好地理解基于网络的医疗保健环境中的社会交换模式。实际上,本研究可以帮助基于网络的患者更有效地获取信息和社会支持。

相似文献

引用本文的文献

本文引用的文献

3
Research on gender differences in online health communities.在线健康社区中的性别差异研究。
Int J Med Inform. 2018 Mar;111:172-181. doi: 10.1016/j.ijmedinf.2017.12.019. Epub 2018 Jan 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验