Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.
College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China.
Brain Imaging Behav. 2021 Aug;15(4):1986-1996. doi: 10.1007/s11682-020-00392-6. Epub 2020 Sep 29.
Parkinson's disease (PD) is the most universal chronic degenerative neurological dyskinesia and an important threat to elderly health. At present, the researches of PD are mainly based on single-modal data analysis, while the fusion research of multi-modal data may provide more meaningful information in the aspect of comprehending the pathogenesis of PD. In this paper, 104 samples having resting functional magnetic resonance imaging (rfMRI) and gene data are from Parkinson's Progression Markers Initiative (PPMI) and Alzheimer's Disease Neuroimaging Initiative (ADNI) database to predict pathological brain areas and risk genes related to PD. In the experiment, Pearson correlation analysis is adopted to conduct fusion analysis from the data of genes and brain areas as multi-modal sample characteristics, and the clustering evolution random forest (CERF) method is applied to detect the discriminative genes and brain areas. The experimental results indicate that compared with several existing advanced methods, the CERF method can further improve the diagnosis of PD and healthy control, and can achieve a significant effect. More importantly, we find that there are some interesting associations between brain areas and genes in PD patients. Based on these associations, we notice that PD-related brain areas include angular gyrus, thalamus, posterior cingulate gyrus and paracentral lobule, and risk genes mainly include C6orf10, HLA-DPB1 and HLA-DOA. These discoveries have a significant contribution to the early prevention and clinical treatments of PD.
帕金森病(PD)是最普遍的慢性退行性神经运动障碍,也是老年人健康的重要威胁。目前,PD 的研究主要基于单模态数据分析,而多模态数据的融合研究可能在理解 PD 发病机制方面提供更有意义的信息。本文从帕金森进展标志物倡议(PPMI)和阿尔茨海默病神经影像学倡议(ADNI)数据库中选取了 104 个具有静息功能磁共振成像(rfMRI)和基因数据的样本,用于预测与 PD 相关的病理性大脑区域和风险基因。在实验中,采用 Pearson 相关分析对基因和大脑区域数据进行融合分析,作为多模态样本特征,并应用聚类演化随机森林(CERF)方法检测具有判别性的基因和大脑区域。实验结果表明,与几种现有的先进方法相比,CERF 方法可以进一步提高 PD 和健康对照组的诊断能力,并能达到显著的效果。更重要的是,我们发现 PD 患者的大脑区域和基因之间存在一些有趣的关联。基于这些关联,我们注意到与 PD 相关的大脑区域包括角回、丘脑、后扣带回和旁中央小叶,风险基因主要包括 C6orf10、HLA-DPB1 和 HLA-DOA。这些发现对 PD 的早期预防和临床治疗具有重要意义。