Suppr超能文献

用于体外分析电、结构和机械读数的人源心肌细胞合胞体。

Aligned human cardiac syncytium for in vitro analysis of electrical, structural, and mechanical readouts.

机构信息

Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.

Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Biotechnol Bioeng. 2021 Jan;118(1):442-452. doi: 10.1002/bit.27582. Epub 2020 Oct 13.

Abstract

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as an exciting new tool for cardiac research and can serve as a preclinical platform for drug development and disease modeling studies. However, these aspirations are limited by current culture methods in which hPSC-CMs resemble fetal human cardiomyocytes in terms of structure and function. Herein we provide a novel in vitro platform that includes patterned extracellular matrix with physiological substrate stiffness and is amenable to both mechanical and electrical analysis. Micropatterned lanes promote the cellular and myofibril alignment of hPSC-CMs while the addition of micropatterned bridges enable formation of a functional cardiac syncytium that beats synchronously over a large two-dimensional area. We investigated the electrophysiological properties of the patterned cardiac constructs and showed they have anisotropic electrical impulse propagation, as occurs in the native myocardium, with speeds 2x faster in the primary direction of the pattern as compared to the transverse direction. Lastly, we interrogated the mechanical function of the pattern constructs and demonstrated the utility of this platform in recording the strength of cardiomyocyte contractions. This biomimetic platform with electrical and mechanical readout capabilities will enable the study of cardiac disease and the influence of pharmaceuticals and toxins on cardiomyocyte function. The platform also holds potential for high throughput evaluation of drug safety and efficacy, thus furthering our understanding of cardiovascular disease and increasing the translational use of hPSC-CMs.

摘要

人多能干细胞衍生的心肌细胞(hPSC-CMs)作为心脏研究的一种令人兴奋的新工具已经出现,并且可以作为药物开发和疾病建模研究的临床前平台。然而,这些愿望受到当前培养方法的限制,在这些方法中,hPSC-CMs 在结构和功能方面与胎生人心肌细胞相似。在此,我们提供了一种新颖的体外平台,该平台包含具有生理基质硬度的图案化细胞外基质,并且易于进行机械和电分析。微图案化通道促进 hPSC-CMs 的细胞和肌原纤维排列,而微图案化桥的添加则使功能齐全的心脏合胞体形成,从而在大面积二维区域上同步跳动。我们研究了图案化心脏构建体的电生理特性,并表明它们具有各向异性的电脉冲传播,与天然心肌中发生的情况一样,与图案的主方向相比,在横向方向上的速度快 2 倍。最后,我们研究了图案构建体的机械功能,并证明了该平台在记录心肌细胞收缩力方面的实用性。该具有电和机械读出功能的仿生平台将能够研究心脏疾病以及药物和毒素对心肌细胞功能的影响。该平台还有望用于高通量评估药物安全性和功效,从而进一步了解心血管疾病并增加 hPSC-CMs 的转化应用。

相似文献

引用本文的文献

2
Toward Origami-Inspired In Vitro Cardiac Tissue Models.迈向受折纸启发的体外心脏组织模型
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1583-1597. doi: 10.1021/acsbiomaterials.4c01594. Epub 2025 Feb 20.
3
An engineered in vitro model of the human myotendinous junction.一种工程化的体外人肌肌腱连接模型。
Acta Biomater. 2024 May;180:279-294. doi: 10.1016/j.actbio.2024.04.007. Epub 2024 Apr 10.

本文引用的文献

3
SarcTrack.萨氏追踪技术。
Circ Res. 2019 Apr 12;124(8):1172-1183. doi: 10.1161/CIRCRESAHA.118.314505.
6
The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials.底物硬度对心肌细胞动作电位的影响
Cell Biochem Biophys. 2016 Dec;74(4):527-535. doi: 10.1007/s12013-016-0758-1. Epub 2016 Oct 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验