Dwyer Kiera D, Kant Rajeev J, Soepriatna Arvin H, Roser Stephanie M, Daley Mark C, Sabe Sharif A, Xu Cynthia M, Choi Bum-Rak, Sellke Frank W, Coulombe Kareen L K
School of Engineering, Brown University Center for Biomedical Engineering, Providence, RI 02912, USA.
Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02903, USA.
Bioengineering (Basel). 2023 May 13;10(5):587. doi: 10.3390/bioengineering10050587.
Despite the overwhelming use of cellularized therapeutics in cardiac regenerative engineering, approaches to biomanufacture engineered cardiac tissues (ECTs) at clinical scale remain limited. This study aims to evaluate the impact of critical biomanufacturing decisions-namely cell dose, hydrogel composition, and size-on ECT formation and function-through the lens of clinical translation. ECTs were fabricated by mixing human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC-CMs) and human cardiac fibroblasts into a collagen hydrogel to engineer meso-(3 × 9 mm), macro- (8 × 12 mm), and mega-ECTs (65 × 75 mm). Meso-ECTs exhibited a hiPSC-CM dose-dependent response in structure and mechanics, with high-density ECTs displaying reduced elastic modulus, collagen organization, prestrain development, and active stress generation. Scaling up, cell-dense macro-ECTs were able to follow point stimulation pacing without arrhythmogenesis. Finally, we successfully fabricated a mega-ECT at clinical scale containing 1 billion hiPSC-CMs for implantation in a swine model of chronic myocardial ischemia to demonstrate the technical feasibility of biomanufacturing, surgical implantation, and engraftment. Through this iterative process, we define the impact of manufacturing variables on ECT formation and function as well as identify challenges that must still be overcome to successfully accelerate ECT clinical translation.
尽管细胞化疗法在心脏再生工程中得到了广泛应用,但临床规模生物制造工程心脏组织(ECT)的方法仍然有限。本研究旨在从临床转化的角度评估关键生物制造决策(即细胞剂量、水凝胶成分和尺寸)对ECT形成和功能的影响。通过将人诱导多能干细胞衍生的心肌细胞(hiPSC-CM)和人心脏成纤维细胞混合到胶原水凝胶中,制造出中尺寸(3×9毫米)、大尺寸(8×12毫米)和超大尺寸(65×75毫米)的ECT。中尺寸ECT在结构和力学方面表现出hiPSC-CM剂量依赖性反应,高密度ECT显示出弹性模量降低、胶原组织减少、预应变发展和主动应力产生。扩大规模后,细胞密集的大尺寸ECT能够跟随点刺激起搏而不发生心律失常。最后,我们成功地在临床规模上制造出一个含有10亿个hiPSC-CM的超大尺寸ECT,用于植入慢性心肌缺血猪模型,以证明生物制造、手术植入和植入的技术可行性。通过这个迭代过程,我们定义了制造变量对ECT形成和功能的影响,并确定了成功加速ECT临床转化仍需克服的挑战。