Randall Samantha E, Martini Maria Carla, Zhou Ying, Joubran Samantha R, Shell Scarlet S
Department of Biology & Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
Program in Bioinformatics & Computational Biology, Worcester Polytechnic Institute, Worcester, MA, USA.
BMC Res Notes. 2020 Sep 29;13(1):462. doi: 10.1186/s13104-020-05302-z.
Restriction-Modification (R-M) systems are ubiquitous in bacteria and were considered for years as rudimentary immune systems that protect bacterial cells from foreign DNA. Currently, these R-M systems are recognized as important players in global gene expression and other cellular processes such us virulence and evolution of genomes. Here, we report the role of the unique DNA methyltransferase in Mycobacterium smegmatis, which shows a moderate degree of sequence similarity to MamA, a previously characterized methyltransferase that affects gene expression in Mycobacterium tuberculosis and is important for survival under hypoxic conditions.
We found that depletion of mamA levels impairs growth and produces elongated cell bodies. Microscopy revealed irregular septation and unevenly distributed DNA, with large areas devoid of DNA and small DNA-free cells. Deletion of MSMEG_3214, a predicted endonuclease-encoding gene co-transcribed with mamA, restored the WT growth phenotype in a mamA-depleted background. Our results suggest that the mamA-depletion phenotype can be explained by DNA cleavage by the apparent cognate restriction endonuclease MSMEG_3214. In addition, in silico analysis predicts that both MamA methyltransferase and MSMEG_3214 endonuclease recognize the same palindromic DNA sequence. We propose that MamA and MSMEG_3214 constitute a previously undescribed R-M system in M. smegmatis.
限制修饰(R-M)系统在细菌中普遍存在,多年来一直被视为保护细菌细胞免受外源DNA侵害的原始免疫系统。目前,这些R-M系统被认为是全球基因表达和其他细胞过程(如毒力和基因组进化)中的重要参与者。在此,我们报道了耻垢分枝杆菌中独特的DNA甲基转移酶的作用,该酶与MamA具有一定程度的序列相似性,MamA是一种先前已鉴定的甲基转移酶,影响结核分枝杆菌中的基因表达,并且在低氧条件下的生存中起重要作用。
我们发现MamA水平的降低会损害生长并产生伸长的细胞体。显微镜检查显示出不规则的隔膜形成和DNA分布不均,存在大片无DNA区域和小的无DNA细胞。与MamA共转录的预测的编码内切核酸酶的基因MSMEG_3214的缺失,在MamA缺失的背景下恢复了野生型生长表型。我们的结果表明,MamA缺失表型可以通过明显的同源限制性内切核酸酶MSMEG_3214的DNA切割来解释。此外,计算机分析预测MamA甲基转移酶和MSMEG_3214内切核酸酶都识别相同的回文DNA序列。我们提出MamA和MSMEG_3214在耻垢分枝杆菌中构成了一个先前未描述的R-M系统。